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Abstract

Psychophysical data have demonstrated that our visual system must integrate multiple, spa-

tially local and non-local cues to construct the visual scene. In this paper we describe a prob-

abilistic network model which integrates visual cues to infer intermediate-level visual repre-

sentations. We demonstrate the network model for two example problems: inferring “direction

of figure” (DOF) [15] and estimating perceived velocity. One can consider the assignment

of DOF as essentially a problem in probabilistic inference, with DOF being a hidden vari-

able, assigning “ownership” of an object’s occluding boundary to a region which represents

the “figure”. The DOF is not directly observed but can potentially be inferred from local ob-

servations and “message passing”. For example, our model combines contour convexity and

similarity/proximity cues to form observations, with belief propagation (BP) used to integrate

these observations with state probabilities to infer the DOF.

We extend the network model, integrating form and motion streams, to explain the coherence-

based motion effects first demonstrated by McDermott et al. [11]. The extended model consists

of two interacting network chains (streams), one for inferring DOF and the other for infer-

ring scene motion. The local figure-ground relationships estimated in the DOF stream are

subsequently used by the motion stream as evidence for surface occlusion, modulating the co-

variance of a Gaussian distribution used to model the velocity at apertures located at junction

points. The distribution of scene motion ultimately is represented in velocity space as a mixture

of these form-modulated Gaussians.

Simulation results show that the network’s integration of cues can account for several exam-

ples of perceptual ambiguity in DOF, consistent with human perception. Also, the integration

of form and motion representations qualitatively accounts for psychophysical results showing

surface dependent motion coherence of oscillating edges [11]. We also show that the model

naturally integrates top-down cues, leading to perceptual bias in interpreting ambiguous fig-

ures, such as Rubin’s vase, as well as bias in the perceived coherence of object motion.
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1. Introduction

A challenge in developing any biologically plausible model of intermediate or high-level visual

processing is resolution of the generalized aperture problem–i.e neurons or populations of neu-

rons sample only a limited extent of the visual field which can lead to “observations” that are

ambiguous relative to the structure and motion of objects. The aperture problem is well-known

in motion processing (e.g. [6, 10, 16]), but the problem is also evident in form processing, for

example inferring figure-ground relationships. Ultimately intermediate and high-level visual

processing must “infer the scene” by integrating spatially non-local cues.

Multiple modalities, or streams, also must be integrated to resolve perceptual ambiguities

and/or maintain consistency with human perception. For example, form and motion streams

can interact in sophisticated ways, with form cues having significant impact on the perception

of coherent motion. McDermott, Weiss and Adelson [11] have shown, through psychophysi-

cal experiments, that perceived motion coherence can be affected by the strength of configu-

ral cues, such as border ownership, amodal completion, and depth segregation. Their results

demonstrate that the configural cues are not purely local (i.e. not simply junction cues) and

instead require spatially non-local integration across the scene – though not global consistency.

Thus integration across space and stream can be seen to be intimately linked.

Weiss and colleagues have demonstrated that visual integration (and segmentation) processes

are naturally defined within a Bayesian framework. Weiss has provided numerous examples of

how Bayesian modeling can account for a variety of motion illusions [19], inference of figure-

ground [18] and integration of form and motion cues for motion segmentation [17]. These

impressive and broad ranging results suggest Bayesian inference as a possible mechanism un-

derlying intermediate-level visual processing.

In this paper we begin by extending the ideas of Weiss [18] for computing direction-of-

figure (DOF), a surface representation proposed by Sajda and Finkel [15]. One can consider

the assignment of DOF as essentially a problem in probabilistic inference, with DOF being a

hidden variable that is not directly observed but can potentially be inferred from local observa-

tions and some form of message passing, representing spatial integration. We develop a locally

connected probabilistic network model for integrating both local and non-local spatial cues for
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inferring DOF, and demonstrate how, through the probabilistic integration of cues, the model

can account for several figure-ground ambiguities that are consistent with human perception.

In addition, the model naturally allows for the integration of top-down cues, representing bias

or prior beliefs, and therefore can also account for a variety of reversible ambiguous figures

(e.g. Rubin’s Vase). The model, though not biologically realistic (e.g. nodes in the network

do not represent spiking neurons), demonstrates how a locally connected network with nodes

which are restricted to local observations in the visual field can integrate multiple spatial cues

for inferring surface representations.

Our model also begins to consider how form and motion streams, both confronted with

the aperture problem, might interact to infer scene structure and attributes. In particular, we

demonstrate Bayesian mechanisms for integration and inference which qualitatively account

for the motion coherence results of McDermott et al [11]. We extend our model for computing

DOF (form stream) and add a second stream dedicated to motion processing. The probabilis-

tic representation of the DOF plays a critical role in that the degree of certainty of the DOF

modulates the degree of certainty of the local motion. This degree of DOF certainty (i.e belief)

ultimately changes the scene motion and the “perception” of the network.

2. Belief Propagation

Solving an inference problem often begins with representing the problem using some form

of graphical structure. Examples of such graphical models are Bayesian (or belief) networks

[14] and undirected graphs, also known as Markov networks. In a graphical model a node

represents a random variable and links specify the dependency relationships between these

variables [7]. The states of the random variables can be hidden in the sense that they are not

directly observable, but it is assumed that they may have observations related to the state values.

Graphical models allow for a compact representation of many classes of inference problems.

Once the underlying graphical structure has been constructed, the goal is to infer the states

of hidden variables from the available observations. Belief Propagation (BP) is an algorithm

for solving inference problems based on local message passing. In this section we focus on

undirected graphical models with pairwise potentials. It has been shown that most graphical
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models can be converted into this general form [20].

Let x be a set of hidden variables and y a set of observed variables. The joint probability

distribution of x given y is given by,

P (x1, . . . , xn|y) = c
∏

i,j

Tij(xi, xj)
∏

i

Ei(xi, yi) (1)

where c is a normalizing constant, xi represents the state of node i, Tij(xi, xj) captures the

compatibility between neighboring nodes xi and xj , and Ei(xi, yi) is the local interaction be-

tween the hidden and observed variables at location i. An approximate marginal probability of

the joint probability (eq. (1)) at node xi over all xj other than xi is called the local belief, b(xi).

The BP algorithm iterates a local message computation and belief updates [20]. The mes-

sage Mij(xj) passed from a hidden node xi to its neighboring hidden node xj represents the

probability distribution over the state of xj . In each iteration, messages and beliefs are updated

as follows:

Mij(xj) = c
∫

xi

dxiTij(xi, xj)Ei(xi, yi)
∏

xk∈Ni/xj

Mki(xi) (2)

b(xi) = cEi(xi, yi)
∏

xk∈Ni

Mki(xi) (3)

where Ni/xj denotes a set of neighboring nodes of xi except xj . Mij is computed by com-

bining all messages received by xi from all neighbors except xj in the previous iteration and

marginalizing over all possible states of xi (Figure 1). The current local belief is estimated by

combining all incoming messages and the local observations.

It has been shown that, for singly-connected graphs, BP converges to exact marginal prob-

abilities [20]. Although how it works for general graphs is not well understood, experimental

results on some vision problems, such as motion analysis, also show that BP works well for

graphs with loops [4].

3. Probabilistic Network Model for Inferring DOF

3.1 DOF Problem

Segmentation of a scene into foreground figures and background is a central problem in vi-

sual perception. Recent studies report evidence showing that shape selective cells in infero-
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Figure 1: Illustration of local message passing from node xi to node xj . Open circles are hidden

variables, while shaded circles represent observed variables. The local belief at node xj is

computed by combining the incoming messages from all its neighbors and the local interaction

Ej .

temporal cortex and lateral occipital complex, known to be important for visual perception and

recognition, respond selectively to figure-ground relationships [2, 9]. Although these results

also indicate that figure-ground selectivity of cell responses is not entirely determined by the

contours, psychological evidence of shape perception suggests that the figure-ground segrega-

tion starts at contours by assigning “ownership” of an object’s occluding boundary to a region

which represents the object’s surface [12, 13]. The contour ownership, sometimes referred to

as “direction of figure” [15], therefore specifies a figure-ground relationship directly for the

occluding contours. The contour ownership is hypothesized to be assigned in early stages of

visual processing. Recent neurophysiological findings reported by Zhou et al. support the hy-

pothesis, showing that more than half of the neurons in extrastriate cortex (areas V2 and V4)

are selective to contour ownership [21].

Compared to where the contour ownership is processed, less is known about how the owner-

ship is resolved computationally. In previous studies, several computational models have been

developed and applied to estimate DOF. In [15], Sajda and Finkel proposed a network-based

neural computational model to represent object surfaces through contour ownership. In their

model mechanisms, which utilize various local and global cues, cooperate to compute DOF.

Simulation results show that the model can account for a variety of perceptual phenomena.
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However, there are limitations in that their model does not generalize when one considers the

convergence of cues provided through different stages – i.e. convergence of top-down, bottom-

up and “horizontal” (within area) cues.

Recent work by Weiss has applied a probabilistic network model based on the BP algorithm

to the DOF problem [18]. In his BP model, DOF computation is formulated as probabilistic

inference where DOF is represented as a hidden variable that is not directly observable. The

model infers DOF from local observations by propagating local estimates at different locations

along the contour. The performance of the BP model is compared with three relaxation labeling

algorithms, with results showing the BP model’s superiority over other techniques in terms of

both accuracy and convergence speed.

Weiss’s model uses observations made using a single cue, which is local figure convexity.

Although convexity is considered as having strong influence on perceiving figures compared

to other cues such as contrast polarity or symmetry [8], using the convexity cue alone is insuf-

ficient in many cases, in particular those with perceptual ambiguity in figure-ground. In this

section we describe our network model which infers DOF by combining figure convexity and

similarity/proximity cues to form observations.

3.2 Graphical Model and Inference of DOF using BP

We formulate the DOF problem using an undirected chain, shown in Figure 2, similar to Weiss

[18]. The hidden variable xi represents a two dimensional binary DOF vector at location i

along the boundary. The vector xi = (1, 0)T specifies that the DOF is in the direction of local

convexity, while xi = (0, 1)T assigns the opposite direction to the DOF.

Since the graph is a chain, every node has two neighbors from which it receives messages.

Furthermore, the hidden variables are discrete and have two possible states, with incoming

messages and belief at xj in Figure 2 computed as follows:

Mij(xj) = c
∑

xi

Tij(xi, xj)Ei(xi, yi)Mhi(xi) (4)

Mkj(xj) = c
∑

xk

Tkj(xk, xj)Ek(xk, yk)Mlk(xk) (5)

b(xj) = cEj(xj, yj)Mij(xj)Mkj(xj) (6)
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Figure 2: An undirected chain graph where each hidden node (open circle) has a corresponding

observation (shaded circle).

where the sum is over two possible states of the hidden variables. The vector multiplication is

performed element by element. Each element of b(xj) represents the degree of confidence for

DOF for the corresponding direction at location j. When the algorithm converges the states of

the hidden variables are determined by taking the direction having larger confidence.

3.3 Combining Multiple Cues

Perceptual studies have shown that various cues are used for figure-ground discrimination. Ex-

amples of such cues are figure convexity, similarity/proximity, contour closure, contour con-

tinuation, symmetry, T-junctions, and binocular disparity [8, 13, 15]. Although it has been

suggested that some cues have stronger influence than others (e.g. convexity prevails over

symmetry [8]), generally a single cue is not capable of explaining all aspects of the perceptual

phenomena. In this work, we combine local figure convexity and similarity/proximity cues and

show that it can further extend the ability of inferring DOF of the BP model.

The convexity at point i is determined by the local angle of the contour at the location. Let

ai be the local angle. The local interaction between hidden variable xi and observed variable

yi,cvx = (θ, 2π − θ) is defined as,

Ei,cvx(xi, yi,cvx) = (exp(−θ), exp(−(2π − θ))) (7)

where θ = min(ai, 2π − ai) (Figure 3). This formulation prefers smaller angles.

To compute the similarity/proximity cue, we first look for points having similar local tangent

angle that lie in a direction orthogonal to the contour at a given location. Once those points
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Figure 3: Left: The local angle ai at point i is greater than π, so the angle θ in the direction

of convexity is 2π − ai. Right: The distances from point i to the closest points having similar

local tangent angle. Those points should lie in the direction orthogonal to the contour at point

i.

are found, which side of the local convexity direction the points reside is determined. Let

yi,sim = (di1, di2), where di1 and di2 are the distances to the closest similar points found in

each direction (Figure 3). Then, the local interaction is again defined using an exponential, i.e.

Ei,sim(xi, yi,sim) = (exp(−di1), exp(−di2)) (8)

Thus, the influence of the similarity/proximity cue decreases as the distance increases.

The two local interactions defined in the equation (7) and equation (8) are combined based

on a weak fusion model [3]. The weak fusion model is a simple scheme which suggests that

a property of the environment is estimated separately by each independent cue, and then com-

bined in a weighted linear fashion to compute the overall effect. Following weak fusion, the

total local interaction Ei is computed by weighted average of the interactions made by two

separate observations yi,cvx and yi,sim:

Ei = wcvxEi,cvx + wsimEi,sim (9)

4. Probabilistic Network Model for Velocity Estimation

Based on the data from various psychophysical experiments indicating that the strength of

form cues can significantly affects the perception of motion coherence, we add to the previous
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network model a separate, structurally identical but functionally different processing stream.

As a result, the proposed network model consists of two streams: the form stream inferring

DOF and the motion stream performing velocity estimation (Figure 4). In current model the

two streams interact unidirectionally so the influence flows from form stream to motion stream

only. Both DOF and velocity are inferred from local observations using belief propagation.

x i
dofy i

dof
x i

mot y i
mot

x i−1
dof

x i+1
dofy i+1

dof

y i−1
dof

x i−1
mot

x i+1
mot

y i−1
mot

y i+1
mot

at junctions

DOF probability

Form stream Motion stream

Figure 4: Bayesian network model for form and motion streams. The DOF probability com-

puted in the form stream affects the motion stream by modulating the covariances of distribu-

tions used to model the velocity at apertures located at junction points. In the present model,

the interaction between form and motion streams is unidirectional.

4.1 Interaction between Form and Motion Streams and Velocity Estima-

tion

Due to the aperture problem, a single local measurement along the contour cannot determine

the object’s motion, and therefore motion integration across space is required. There are also

several features, such as corners, line terminators, and junctions, that may provide unambigu-
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ous local motion and dominate the motion integration. In this work, we focus on the influence

of a form cue (DOF) on local motion at junctions, and subsequently on the motion integration.

The degree of certainty in DOF at junctions inferred in the form stream can be used to dis-

tinguish between intrinsic terminators, that are due to the natural line ending of an object, and

extrinsic terminators, that are not created by the end of a line itself but rather via occlusion

by another surface. Intrinsic terminators provide an unambiguous signal for the true velocity

of the line, while extrinsic terminators provide a locally ambiguous signal which must be sup-

pressed for accurate motion computation [12]. DOF is an explicit surface representation, and

therefore the degree of certainty (i.e belief) in DOF at junctions can be used to represent the

strength of the evidence for surface occlusion, which determines the terminator type.

The hidden node in the motion stream represents a velocity of the corresponding location

along the contour. We assume that both the pairwise compatibility Tij(x
mot
i , xmot

j ) and the local

interaction Ei(x
mot
i , ymot

i ) that models the velocity likelihood at apertures are Gaussian. Tij is

set manually and Ei is defined by a mean of normal velocity at point i and a local covariance

matrix Covi (Figure 13). Before the BP algorithm starts, the variance at junction points is

modulated by a function of DOF belief b(xdof
i ) as follows:

Covi = eα{b(xdof
i

)−0.5} · Covi (10)

Initially, the covariance matrices of hidden variables are set to represent infinite uncertainty,

and mean vectors are set to zero. When the BP algorithm converges, the motion integration is

performed by computing the mixture of Gaussians:

p(v) =
∑

i

p(v|i)p(i) (11)

where p(v|i) is the probability of velocity v from the resulting Gaussian of hidden variable

xmot
i , and p(i)’s are the mixing coefficients.

5. Simulation Results

Throughout the experiments described in this section, we set the pairwise compatibility as:

Tij(xi, xj) =











0.995 if xi = xj

0.005 if xi 6= xj

(12)
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Thus, Tij reflects strong preference for neighboring points to have the same DOF or similar

velocity. Also, all results are obtained using the same set of weight values for wcvx and wsim.

The number of iterations in the BP algorithm was set to the number of nodes to make sure that

information from each node has a chance to propagate to all other nodes.

5.1 Inferring DOF

The right figure in Figure 5 shows the predicted DOF by the probabilistic network model for an

arbitrary shaped figure. Along with it, the initial local estimate of DOF is shown on the left. The

color of the DOF indicator represents the confidence, with increasing confidence as one moves

from blue to red. The initial estimate on the left clearly shows the preference for local convex

direction with stronger confidence around locations of high local curvature. Although the

network model quickly converges to the correct DOF, the confidence levels continue updating,

resulting in a very high confidence – greater than 95% – in every location as shown in Figure 5

(Right).

Figure 5: Left: Initial local estimate of DOF along the contour. Right: DOF prediction after

convergence. The confidence is very high (> 95%) in every location on the contour. Degree of

confidence increases as the color changes from blue to red.
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5.1.1 Ambiguous Figure-Ground

There are several classic examples in which discriminating figure from background is not im-

mediately clear. The first two square spiral figures shown in Figure 6 are such examples [15].

Discrimination of the figure’s surface in the first spiral is difficult , with difficulty increasing

for regions close to the center of the spiral1. On the other hand, discriminating the figure in

the second spiral appears to be straightforward. Immediately, we tend to perceive the thin strip

in the center as figure, however this is incorrect. In this case, the width of the spiral increases

as it winds around toward the center, generating an incorrect perception of figure-ground. Un-

like the first two figures, correct figure-ground discrimination can be correctly made almost

instantly for the third spiral.

Figure 6: Left: Spiral figure in which figure-ground discrimination is ambiguous unless serially

tracing the contour. Middle: Increasing spiral width as it winds around toward the center

generates incorrect figure-ground percept. Right: Figure in which the correct percept of figure-

ground can be made immediately. All figures are reproduced from [15].

As one might expect, a BP model using convexity cues alone predicts DOF in the same way

for all three cases as shown in Figure 7 (top). Convexity cues conflict only on the boundaries of

the outermost and innermost strips, so the confidence of DOF is very high, except on the two

sides where the cue conflicts. As a result, the pattern of DOF prediction is the same regardless

of the spiral type (top row in Figure 7). As discussed in [15], similarity/proximity cue can

1Note that all DOF relationships can be determined if one traces the contours of the spiral and “propagates”

high confidence DOF assignments to low confidence regions. However in this discussion we ignore such “trac-

ing”, though such information could be integrated as another form of prior cue.
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Figure 7: DOF estimation results for the three spiral images in Figure 6. Top row: DOF

estimate using local convexity cue alone. Bottom row: DOF estimate by the model using

both convexity and similarity/proximity cues consistent with human perception. Note the low

certainty (blue) for the central part of the first spiral, indicating ambiguity of DOF, consistent

with human perception. Also note the high certainty (red) for the central part of the second

spiral, an incorrect percept which is consistent with human interpretation.
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be considered as a main source of the ambiguous and inconsistent interpretation. Indeed, the

network model using both convexity and similarity/proximity cues predicts DOF very close to

human perception. DOF figures shown in the bottom row of Figure 7 illustrate increasing am-

biguity and/or incorrect interpretation for the center region of the first two spirals, and perfect

figure segmentation for the last spiral. Although they are not shown here, results show that it

takes longer for the network model to converge for the first two spirals, with more oscillations

in the DOF assignment, as compared to the third example. The results are slightly different,

especially near the periphery of the spirals, from those obtained by the neural computational

model described in [15]. We believe that this is because the current network model does not

exploit observations from closure cues.

5.1.2 Perceptual Shift Induced by Prior Information

Certain figures are perceptually ambiguous in that figure and ground can shift or even oscillate.

One of the most famous figures that demonstrates this perceptual ambiguity is Rubin’s vase,

shown in Figure 8. In this figure, one can perceive either faces or a vase (never both simulta-

neously), and whenever the perceived object is shifted the contour ownership is also changed

accordingly.

Figure 8: Rubin’s vase (from [1]).

One can bias the interpretation of the ambiguous figures by providing prior information.

For example, prior cues might emerge from recognition of distinct visual features (e.g. nose,

eyes, chin). In our probabilistic network model, prior information can be considered as another
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Figure 9: DOF prediction for Rubin’s vase without using prior information.

Figure 10: Left: Prior cue for face features. Right: DOF estimate of the network model integrat-

ing prior information. Figure shows the bias of DOF toward faces, reflecting strong influence

of the prior cue.
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Figure 11: Left: Prior cues for vase features. Right: DOF estimate of the network model

integrating prior information. Figure shows the bias of DOF toward vase, reflecting strong

influence of the prior cue.

cue for DOF and therefore combined in the same way as described in section 3.3. In this

case, the network model integrates bottom-up (convexity), horizontal (similarity/proximity),

and top-down (prior information) cues using a simple combination mechanism.

Figure 9 shows the DOF estimation for the Rubin’s vase image without using prior infor-

mation. The network assigns the contour to faces mainly because of the influence from the

convexity cue, however the confidence level is low throughout the entire contour. Prior infor-

mation is added by explicitly specifying figure direction at several locations on the contour (top

figures in Figure 10 and Figure 11). The results of integrating the prior cue are shown in the

bottom of Figures 10 and 11. Even if a small weight is assigned for the prior cue2, it strongly

biases the DOF.

5.2 Velocity Estimation

Figure 12 shows the two stimuli used for these experiments. They are 90 degree rotated ver-

sions of the diamond stimuli described in McDermott et al.3 [11], but the perceptual effect is

basically the same. The motion of moving line segments is identical between the two stimuli.

A pair of vertical line segments moves together sinusoidally in a horizontal direction while

2The ratio of wprior over (wcvx + wsim) is 1 : 8.
3See http://koffka.mit.edu/˜kanile/master.html for flash demos.
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the two horizontal lines move in a vertical direction. The vertical and horizontal motions are

90 degrees out of phase. The difference between the two stimuli is the shape of the occluders,

which alters the perceived motion. A single coherent rotation is perceived for stimulus B, while

we are more likely to see two separate motions of the line segments for stimulus A [11].

We argue that the belief for DOF represents the strength of surface occlusion which deter-

mines the property of line terminators at junctions and as a result, changes the motion percep-

tion. For stimulus A, the belief for DOF at junction points is weaker than that for stimulus B.

Therefore, the junctions in stimulus A are considered more likely to be intrinsic terminators

whose motion is less ambiguous (left figure in Figure 13). Conversely, for stimulus B, the be-

lief for DOF for the occluding surfaces at junction points is very strong so the ambiguity of the

local motion increases. Therefore, the sharp peak shown in the left figure of Figure 13 flattens

out.

b

c

a

stimulus Bstimulus A

Figure 12: Stimuli generated from four line segments that move sinusoidally, 90 degrees out

of phase, in vertical and horizontal directions. The line segments are presented with L-shaped

occluders (stimulus A) and closed square occluders (stimulus B). The presence of the occluding

surface alters the motion perception. Shown in stimulus A are three local apertures (a, b, c),

which would have identical information content in stimulus B.

Figure 14 shows the resulting velocity estimated by the network model for stimulus A (top

row) and stimulus B (bottom row). Since the estimated motions along the line segments that

move simultaneously are almost identical after convergence, the first two columns show only

the motions at locations b and c (shown in Figure 12) in the velocity space. In the third column,
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Figure 13: Velocity likelihood for three apertures shown in Figure 12. Left: Likelihood at

junction point a. Middle: Likelihood at location b on a line segment moving vertically. Right:

Likelihood at location c on a line segment moving horizontally.

which displays the integrated motion, we clearly see the bimodal distribution for stimulus A,

while a single peak is formed at the intersection of two distributions for stimulus B. This

implies that we perceive two separate motions for stimulus A, and a single coherent motion

for stimulus B. Figure 15 illustrates the resulting velocity estimates for six successive frames

sampled from a period of the sinusoidal motion. The maximum a posterior estimate for each

frame follows a circular trajectory for stimulus B, which is consistent with the perception of

rotation.

A prior cue shown in Figure 16 can be added for inferring DOF in stimulus A. Psychophys-

ically, this simulates priming subjects or using stereo to add depth information so that subjects

are biased to see the occlusion. Adding priors to the form stream in the model strengthens the

belief for DOF in the indicated direction, and consequently more coherent motion would be

expected. Figure 16 shows the results with weak and strong weights on the prior cue. Com-

pared to the top row of Figure 14, the solution becomes more unimodal and, with a strong prior

it produces a single peak at the intersection similar to stimulus B.

6. Conclusion

We have presented a probabilistic network model for integrating multiple cues, including both

spatially local and non-local cues as well as different modalities such as form and motion

streams. The “perception” of the network model was demonstrated for two problems involving

intermediate-level surface representations: inferring direction of figure and velocity estimation.
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Figure 14: Velocity estimation results for stimulus A (top) and stimulus B (bottom). Left:

Estimation at location b. Middle: Estimation at location c. Right: Velocity computed by

combining the two estimation in the first two columns using mixture of Gaussian.
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Figure 15: A sequence of resulting velocity estimation for six successive frames sampled from

a period of sinusoidal motion with a regular interval. Top row shows two separate motions

oscillating in the direction normal to the line segment for stimulus A. The bottom sequence

shows a coherent motion forming a circular trajectory.
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Figure 16: Left: Prior cue for stimulus A used for inferring DOF. Right: Velocity estimation

results with weak (top) and strong (bottom) weights on prior cues.

The inference scheme of the model is based on a local belief propagation algorithm. Simula-

tion results show that the integration of multiple cues extends the network model’s ability to

correctly infer DOF, allowing it to account for certain cases of perceptual ambiguity, consistent

with human perception. Results for velocity estimation also demonstrate qualitative agreement

with psychophysical motion coherence experiments.

Our implementation for integrating form and motion streams is not meant to represent a

complete model, instead it suggests that spatial cues from multiple streams might be integrated

using a common framework to “construct” a scene. Others have attempted to develop more

biologically realistic models of form and motion integration [5], with mechanisms that are

perhaps more “neural”. However these models are difficult to analyze, particularly in terms

of understanding the general role/effect of “uncertainty” in the observations and reversal or

ambiguity in perception. In so much that we do not claim that ours is as a biologically realistic

model, it is worth noting that it is constructed as a network model, with no requirements for

global connectivity or consistency. An interesting question to explore is whether the human

visual system possesses the necessary neural machinery for locally constructing distributions

of observations and integrating these via local “message passing”.
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