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Abstract
We describe a closed-loop brain–computer interface that re-ranks an image database by
iterating between user generated ‘interest’ scores and computer vision generated visual
similarity measures. The interest scores are based on decoding the electroencephalographic
(EEG) correlates of target detection, attentional shifts and self-monitoring processes, which
result from the user paying attention to target images interspersed in rapid serial visual
presentation (RSVP) sequences. The highest scored images are passed to a semi-supervised
computer vision system that reorganizes the image database accordingly, using a graph-based
representation that captures visual similarity between images. The system can either query the
user for more information, by adaptively resampling the database to create additional RSVP
sequences, or it can converge to a ‘done’ state. The done state includes a final ranking of the
image database and also a ‘guess’ of the user’s chosen category of interest. We find that the
closed-loop system’s re-rankings can substantially expedite database searches for target image
categories chosen by the subjects. Furthermore, better reorganizations are achieved than by
relying on EEG interest rankings alone, or if the system were simply run in an open loop
format without adaptive resampling.

S Online supplementary data available from stacks.iop.org/JNE/8/036025/mmedia

1. Introduction

The ever growing capabilities of both computer processing
and storage have led to an abundance of data which can
easily lead to information overload, as our speed in accessing
data far outweighs our ability to process it. This makes
identification of only the most useful information a significant
problem. Examples range from searching product databases
of tens of thousands of entries to using services such as Flikr
and Google images to find particular images amongst the
billions accessible. These search scenarios become even more
challenging if the database metadata is not relevant to the
search (or is nonexistent), or if the search can only be vaguely
defined (e.g. looking for ‘interesting’ entries).

Computer vision (CV) has had a major focus on
automating the identification, annotation, recognition or
search of imagery. However, while CV has shown notable
successes, these typically involve highly constrained situations
in which the search can be well defined, and the usefulness of
CV systems for general purpose or subjective search is limited.
These limits are particularly notable in comparison to human
vision (HV), which remains unmatched in regards to robust
and general purpose object recognition. HV can parse a scene
and easily recognize objects despite wide variations in scale,
lighting, pose, background clutter, etc, and can easily direct its
attention to look for images that are ‘interesting’ to a particular
individual. Furthermore, HV can do so in as little as a few
hundred milliseconds [1], easily getting the ‘gist’ of a scene
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with only brief glances [2]. However, despite these abilities to
extract general information from a single image quickly, CV is
still superior to HV for factors such as processing speed, data
throughput and lack of fatigue, being able to process large
batches of imagery much more quickly.

Cortically-coupled computer vision (C3Vision) refers to
a particular class of brain–computer interface (BCI) meant
to combine the complementary strengths of CV and HV to
provide robust image search and retrieval in high throughput
tasks [3–5]. C3Vision is largely inspired by the notable
successes of BCIs that have shown that noninvasive EEG
recordings can be used to control systems as varied as
communication systems, computer cursors, mobile devices
(e.g. wheelchairs), and artificial muscle stimulation [6–18].
In particular, C3vision is related to those BCIs that rely on
some combination of a target detection and the attentional
orienting response. These natural phenomena result from
a person being attentive to certain, relatively rare, stimuli,
and produce measurable scalp EEG signals, in particular
event-related potentials (ERPs) such as the P300 (also termed
the P3b) and the P3a [19–21]. Numerous BCIs, such
as P300 spellers, utilize the ‘oddball’ response, typically
by relying on a user’s neural response to rare visual
stimuli, as a method of controlling communication systems
[9, 22–25]. Notably though, these BCI systems tend to have
low information transfer rates (unsurprisingly given the low
SNR characteristics of EEG recordings), and, as such, have
been meant primarily as assistive devices for handicapped
users. Like these systems, C3Vision focuses on users’ ERP
responses when they observe images for which they currently
have an interest. C3Vision diverges from many BCI systems
in that it is part of a growing effort to create BCIs meant to
assist able-bodied users in rapidly finding objects of interest
within either large images or image databases [4, 5, 26–28].
By combining CV and HV, C3Vision can help users locate
objects of interest contained within rapidly presented streams
of images (often as fast as 10 images s−1) [3–5].

In this paper, we describe and evaluate a closed-loop
variation of C3Vision. In this configuration, the human
and computer vision components of the system interact
(unlike our previous open-loop systems which operated in
a serial fashion, with either CV preceding HV or vice versa
[3–5, 28]). This interaction offers significant potential for
improved performance, as other BCI studies have found that
closed-loop systems (where feedback to the user facilitates
learning and adaptation) have better overall performance than
their open-loop counterparts [29–34]. In the case of C3Vision,
a closed-loop system architecture allows the CV system to
query the user for more information as necessary to help
ensure that it can identify target images, while reducing the
number of images that must be directly inspected by the user.
Specifically, in our tests we explore how effectively a closed-
loop C3Vision (CL-C3Vision) system can be used to find target
images in a moderately-sized image database whose images
fall into well-defined categories. Initially a fraction of the
database images are rapidly presented to the user, and are
tagged with ‘interest scores’ by decoding the user’s EEG. The
images with the highest interest scores are flagged and sent to

a CV module. The CV decides whether it can infer a set of
consistent properties between the flagged images, and whether
it can use that information to effectively search the full image
database. If not, the CV acquires additional information by
resampling the database to select another small set of images
(using the currently identified images of interest) to present to
the user. In this way, the CV can aggregate information over
a growing subset of the database’s full contents to refine its
target knowledge from the user’s EEG data, rather than relying
exclusively on improving SNR through repeatedly showing the
same images. This closed-loop interaction continues with the
CV adaptively resampling the database to present additional
images to the user until the CV is ready to perform a final
scoring. This last scoring includes all the database images,
including those unseen by the user (which can conceivably
extend to millions of images). The success of the final scoring
is quantified by how well it can be used to reorganize the
database to expedite a search for the target images. As a final
test, the CV also attempts to explicitly infer the user’s intent by
identifying the specific image category which had been chosen
as the search target (the target either having been assigned by
the experimenter or freely chosen by the subject).

2. Methods

2.1. System overview

The closed-loop C3Vision (CL-C3Vision) system we have
developed is aimed at assisting a user in searching through
a large database of imagery and locating images of ‘interest’,
i.e. target imagery. The architecture involves three primary
components: an image database that the user wishes to search,
an EEG interest detector, and a CV system. Figure 1 illustrates
the connections between these components, and algorithm 1
summarizes their closed-loop interaction. The search is started
by a random sample of the database imagery being presented to
the user. An EEG interest detector (created previously during a
brief training phase) ranks the user’s interest in the images. The
highest ranked images are flagged and sent to the CV module.
The CV module uses these flagged images to accomplish three
linked purposes. First, it assesses the examples to determine
whether they are highly similar to each other (‘Connectivity
Test’ in figure 1). If so, the CV reorganizes the full database
(including all the imagery unseen by the user) to expedite the
user’s search for other images of interest (in a cyclical process
termed ‘Self-Tuning’), and ‘guesses’ the target category of
the user’s search. Alternatively, the CV can request more
information by selecting an additional set of images for the
user to review (‘No Self-Tuning’ in figure 1, see section 2.5
below for more details regarding the CV and self-tuning).
Specifically, the CV selects a small subset of images from
the database that are most likely to be target related. These
images are then reviewed by the user, creating a closed-loop
interaction that continues until the CV is ready to perform the
final reorganization of the full database.

2.2. Image database

Testing images were taken from the Caltech-101 database
[35]. To prevent fluctuations in image size during the RSVP
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Algorithm 1. Processing pipeline of the closed-loop C3Vision system.

Offline processing:
Construct TAG affinity graph for all images in database

Estimate threshold value for TAG connectivity
Train subject-specific EEG interest detector

Estimate threshold value for indicating significant interest from EEG score
Initialize RSVP sequence with a random sample of images from database
Online looping
repeat

Display RSVP sequence and compute EEG score to estimate subject’s interest
Flag interesting images using EEG score and pre-computed subject interest threshold
Create training image set for TAG using flagged images from current and previous loops
Use flagged images to assign pseudo-labels to TAG graph nodes
Compute average connection strength between pseudo-labeled nodes
Propagate pseudo-labels and assign ranking scores to every node
Update RSVP sequence: select images based on TAG ranking results

until average connection strength of TAG input images exceeds TAG connectivity threshold
System output:
Initiate TAG self-tuning
Compute final ranking scores for images in database

Connectivity
Test

No Self
Tuning

Self
Tuning

Pass

Computer
Vision: TAG

Image
Database

EEG
Interest
Detector

Image
SelectionMost Likely

Database Images
Flagged

Image Set

Interest       Scores

Random

Sample

Target
Guess

Most
Interesting

Images

Additional
Image Selection

Final Database
Reorganization

Fail

Figure 1. Closed-loop C3Vision architecture. A sample of images
from the database is randomly selected and presented to the user in a
RSVP. Interest scores are assigned to each RSVP image based on
the user’s EEG response. These scores are subsequently used to flag
the most ‘interesting’ images. A computer vision module, based on
a transductive graph-based model (TAG), is used to measure how
similar these flagged images are via their connectivity in the TAG
graph. If sufficiently connected, the TAG is used to fully re-sort the
image database and ‘guess’ the target category. Otherwise, the TAG
selects another set of RSVP images to be shown to the user to
acquire additional search target information, see algorithm 1.

from influencing subjects’ visual responses, only a subset of
the Caltech-101 images were used. Specifically, 62 image
categories (a category being Caltech-101 images of a given
type, e.g. ‘elephants’, ‘crayfish’) were selected because their
images could be rescaled to uniform dimensions during visual
presentations with negligible distortion. This provided a total
of 3798 images (42% of the Caltech-101 images), with 31–
128 images/category (mean = 61, STD = 22, supplementary
table S1 available at stacks.iop.org/JNE/8/036025/mmedia
lists all the categories).

2.3. Rapid serial visual presentation

Images were presented to the user using an rapid serial visual
presentation (RSVP) paradigm [36]. Specifically, images were

shown in blocks of 100, with images within each block being
presented at 5 Hz. Each image was centered on the computer
monitor. A fixation cross appeared just prior to each block to
allow the users to center their gaze on the images during the
RSVP sequences. For these tests, the initial RSVP sequence
consisted of 500 images (five blocks) drawn randomly from
the database. Whenever the CV system requested more
information, a two-block (200 image) RSVP sequence of CV-
selected images would be presented (see below). Users were
allowed a self-paced rest period (typically a few seconds)
between each RSVP block.

2.4. EEG interest detector

The users’ EEG responses were used to quantify their interest
in each image shown during the RSVP. EEG data were
recorded using an ActiveTwo Biosemi (Amsterdam, The
Netherlands) system with 64 electrodes positioned according
to the 10–20 international system. The EEG data were
acquired at 2048 Hz, with 60 Hz notch and 0.5 Hz high-pass
filters. The method used to calculate the EEG interest scores
has been previously described [3, 5]. Briefly, it is based on a
linear model,

yn =
∑

i

wixin (1)

where xin is EEG activity at the data sample n measured by
the electrode i, and w is a set of spatial (i.e. over electrode)
weights. Weights are learned from a set of training data
such that y maximally discriminates between target and non-
target images. The spatial distribution of this activity is
assumed to change over time with a temporal resolution (T) of
100 ms. Thus, weight vectors, wki , are found for several
100 ms windows following each image presentation (k is the
time window index and Fs is the sampling rate):

yk =
(

1

N

) ∑
n

∑
i

wkixi[(k−1)N+n],

n = 1, 2, . . . , N, N = T/Fs. (2)
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The resulting values for each of the separate time windows
(yk) are then combined in a weighted average to provide a final
interest score (yIS) for each image:

yIS =
∑

k

vkyk. (3)

The EEG detector used the 1200 ms of data immediately
following each image, although the first 100 ms were ignored
(i.e. only time windows k = 2, 3, . . . ,12 were used). Fisher
linear discriminant (FLD) analysis was used to calculate the
spatial coefficients, wki , and a logistic regression was then
used to create the temporal coefficients, vk [4].

To analyze the spatial topology of the learned EEG
components contributing to the interest score, we computed
a forward model for each spatial component. The forward
model for the component k is given by

ak = Xkyk

yT
k yk

(4)

where ak is a vector having a length equal to the number
of EEG channels (in this case 64), Xk is the EEG data for
the temporal window on which the component was estimated,
having dimensions channels by trials, and yk is the vector of the
kth component response for all trials. The forward model can
be seen as the normalized correlation between the component
and the measured EEG, and thus can be interpreted as a first-
order approximation of what that component would look like
if measured at the scalp.

During the real-time tests of the system, the EEG interest
scores (equation (3)) assigned to each RSVP image were used
to identify a set of images that were of significant interest
to the user. Specifically, these ‘flagged’ images had interest
scores that were two or more standard deviations (STDs) above
the mean interest scores for the subject’s training data (see
section 2.6 below). If fewer than five images passed this
threshold, the threshold was relaxed to 1.64 or 1.0 deviations
above the mean, as necessary, until five or more images from
the RSVP were flagged. Additionally, only images that passed
the two-STD threshold were added to a list of ‘most interesting’
images. In a search in which the CV requested additional
closed-loop RSVPs, these ‘most interesting’ images were
added to the list of images and scores obtained from the most
recent RSVP (if an image was listed multiple times, its scores
were averaged). This was done prior to the image scores being
compared to the interest threshold and the interesting images
being flagged for transmission to the CV (represented by the
feedback prior to the ‘Image Selection’ in figure 1).

2.5. Computer vision: TAG

The computer vision system used is a method termed
transductive annotation by graph (TAG), a semi-supervised
learning technique which uses a small portion of labeled
images from a database as example images for pattern
discovery, and which then propagates the results through a
weighted and undirected graph to score all the images in the
database [37]. In our experiments, these examples were the
images flagged by the EEG interest detector. Details of the
TAG can be found in [38] and [28] (in the latter, its use in

an open-loop C3Vision system is described in detail). Briefly
though, TAG uses an affinity graph to quantify the pairwise
similarity between images in a database via their visual
similarity and any underlying subspace structures determined
from a predefined feature space. Thus, when given a noisy
set of target images (noisy meaning that some of the example
images may be false positives and thus likely to be outliers
in terms of visual similarity), the TAG produces prediction
scores (f ) for all images in the database using a pre-computed
graph [38]. This allows novel images that are similar to the
example image set to be located. As EEG can be very noisy, the
presence of false positives among the flagged images is quite
likely. As such, the TAG’s ability to work with noisy labels
is essential, as incorrect labels will degrade performance [39].
In the current system, gist features were used together with a
b-Matching method to construct the affinity graph [40]. The
specific gist feature parameters were chosen in a general setting
(i.e. blindly to the specific images of the Caltech database) to
generate a 512-dimensional vector, as suggested in [41].

The TAG can often improve its performance in the
presence of a noisy labeled input set by increasing the visual
consistency among the example set prior to generating f . This
is accomplished by replacing some of the example images
with more likely candidates from the larger image database
[28]. This process of ‘self-tuning’ uses the strength of the
TAG graph connections (or ‘connectivity’) to identify outlier
images in the example set. These outliers are dropped from the
example set and replaced with other images from the database
(which are selected via their connectivity with the remaining
example images).

These abilities of the TAG make it well suited to perform
the three CV functions in the CL-C3Vision architecture
described previously in section 2.1. For the first task, i.e.
assessing the visual consistency of the example image set,
the TAG uses the connectivity value (the same value as used
by the TAG when self-tuning [39]) between the example
images to quantify their similarity. Specifically, the average
connectivity of the example images is compared to the average
connectivity found in simulations wherein ten example images
were randomly selected 10 000 times. Because connectivity
in the TAG graph is related to the quantity of example images,
the simulation connectivity values are always normalized to
match the number of inputs that were passed to the CV module.
If the input set connectivity clearly exceeds the corresponding
random simulations value (in this case more than 3 STD from
the mean), the CV module exits the loop and does the final
database reorganization (while predicting the identity of the
user’s selected target category).

The difference between the second and third CV tasks
lies in the use of self-tuning by the TAG. For the second
task, in which the CV module requests more information, the
TAG identifies additional images to be shown to the user. A
basic TAG scoring without self-tuning is performed, and the
200 images with the highest scores are then shown to the
user in an additional RSVP sequence. In cases where the CV
module decides that the system should exit the closed loop and
perform the final reorganization, the TAG uses self-tuning to
refine the example image set, and then scores all the images in
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the database. Given that this calculation will not be performed
until the example set already passed the connectivity check
for image similarity, only 25% TAG self-tuning is used, i.e.
one quarter of the image set images that are furthest from the
others in the TAG graph are eliminated and replaced prior to
the final TAG scoring.

2.6. Experimental protocol

The parameters for the EEG interest detectors (wki and vk in
equations (2) and (3)) were estimated for each user using a set
of training data collected at the beginning of each experimental
session (training data were thus completely separate from the
later testing datasets). During the training period, the subject
was shown a sequence of RSVP blocks (the same format as
the later testing sequences, i.e. blocks of 100 images, 5 Hz
presentation rate), having been instructed to pay attention
to images containing baseball gloves (subjects were shown
several example baseball glove images in preparation). Each
training RSVP block contained 98 distractor and two target
images, and the interest detector’s parameters and current
performance were continually updated as each image was
shown. Each subject was shown 25–35 such blocks (i.e.
2500–3500 images), depending on performance. All training
images (target and distractor) were taken from a subset of
imagery from the Caltech-256 database [42], so that there was
no overlap between the training and testing image databases.

The CL-C3Vision’s effectiveness (in both identifying
what kind of image a subject was interested in and then
reorganizing the image database accordingly) was then tested
in a series of searches in which the EEG interest detector and
computer vision modules described above interacted in real
time. The target images for which the subjects searched always
corresponded to one of the 62 Caltech-101 categories in the
image database. For example, for the first search each subject
was instructed to search for images showing ‘brain’. The BCI
process described above was then implemented. While the
metadata containing the Caltech category of each image was
not available to the BCI during each experimental search, it was
used to evaluate the success of the final database reorganization
after the BCI had concluded and exited the loop. Specifically,
it was used to calculate the average precision (AP) for every
category of images in the database. The category with the
highest AP was presented to the user at the end of each search
to see if the BCI had successfully inferred the user’s intent and
‘guessed’ the identity of the target category. AP, a standard
performance metric used in image search [43], estimates a
value between 0 and 1 that approximates the area under the
precision/recall curve. It goes through the ranked list of
retrieval results, computes the precision value whenever a new
true positive result is found, and then computes the average
when the list is exhausted [44].

This entire process was then repeated for one or more
subsequent searches. In these searches the subject was allowed
free selection of any of the other 62 database categories as the
search target. To ensure that each subject had at least two
search targets in common, a final search was then performed
in which each subject was instructed to look for grand pianos

(assuming that the subject had not already chosen this category
as a target on their own initiative). Prior to every search
sequence, the subject was shown several random example
images from the target category (15% of the images from
that category). In some experiments, the BCI loop was exited
and the final database reorganization performed even if the
images given to the CV module did not pass the connectivity
criteria. These included three instances in which the next
set of images recommended by the TAG for presentation did
not include any target images (typically discovered shortly
after the fact when the subjects reported that they had not
observed any targets in the RSVP), and two cases in which
five RSVP sequences had been presented with the connectivity
requirement still remaining unsatisfied.

Seventeen volunteers participated in the current study.
None reported any history of neurological problems and
informed consent was obtained from all participants in
accordance with the guidelines and approval of the Columbia
University Institutional Review Board. Five subjects were
excluded because they showed a larger probability of
blinking or making other eye movements (consciously or
unconsciously) following the appearance of target images
compared to distractors during the training session. While
these movements did not appear to systematically impact the
performance of the EEG interest detectors either positively
or negatively (see the supplementary material, table S2 and
figure S1, available at stacks.iop.org/JNE/8/036025/mmedia),
the subjects were excluded to emphasize the BCI aspect of the
study and avoid the possibility of EOG artifacts influencing
the results. Each of the remaining 12 subjects (mean age: 22,
STD: 2.2; five females) searched for three to six different
targets (mean: 4.1, STD: 1.2), for a total of 49 different
target searches and 20 different target categories. Four of
these subjects reported having previously participated in EEG
studies, but also reported that these other studies were not
reminiscent of the current BCI study.

3. Results

3.1. Overall system performance

The CL-C3vision BCI was very effective in increasing the AP
of the target category when reorganizing the image database.
Figure 2(a) shows the AP of the target category after the final
database reorganization relative to the fraction of target images
within the final flagged image set sent to the CV module. The
dashed line at the bottom of figure 2(a) shows the average
prevalence of the different image categories in the database.
A category’s chance AP corresponds to its prevalence; thus,
the improvement of the system over chance can clearly be
seen (one-sided t-test, n = 49, p � 0.001). In only 10%
of the searches did the final AP fall below chance values,
and in 65% of the searches the final AP exceeded chance
by more than a factor of 10 (figure 2(b)). Furthermore,
the system successfully ‘guessed’ the target category in
31 of the 49 searches (shown by the embossed circles in
figure 2(a)), a correct guess meaning that the target category
had the highest AP of any image category, making its images
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Figure 2. CL-C3Vision consistently reorganized the image database to emphasize the target images. (a) The final AP achieved by the
system was heavily affected by the fraction of target images in the flagged image set produced by the EEG interest detector, but exceeded
chance levels (the dashed line shows the average chance prevalence between all categories) in 44/49 searches, and did so more than tenfold
in 32 cases. The data points embossed by a circle reflect searches in which the system correctly identified the selected target category, i.e.
that category’s images were those most emphasized by the final database reorganization; (b) shows the AP improvement over chance for all
the searches; (c) shows how results (final AP versus chance) varied between subjects, with three subjects (S2, S6, S11) showing markedly
less effective system performance. The stars indicate searches in which the system correctly identified the target category. Success also
appeared somewhat related to the specific target as well, as improvement over chance was consistently stronger when the target category
was ‘grand piano’ than when it was ‘brain’ (paired one-sided t-test, p = 0.01, n = 12).

the most emphasized (easiest to find) in the final database
reorganization.

Figure 2(c) shows how search successes varied between
subjects and for different search targets. Notably, three
subjects (S2, S6, S11) accounted for 10 of the 18 cases in
which the system failed to correctly guess the target category.

During the tests for these three subjects, the interest detector
was notably less successful in flagging target images, resulting
in low-precision image sets being sent to the CV (observable
in figure 2(a)). Specifically, the average target precision in
the image sets given to the CV following the initial (randomly
selected) RSVP sequences was 0.10 (STD = 0.16, n = 11)
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Figure 3. Impact of the number of target images in the RSVP on the
EEG interest detector performance. Shown is the precision of target
images in the image sets flagged as ‘interesting’ by the interest
detector (for every search RSVP between all 12 subjects) as well as
the fraction of the RSVP that was composed of target images.
Typically sets of images of higher precision were flagged when the
RSVP also had a higher prevalence of target images, allowing the
CV to aid the interest detector by increasing the number of target
images in successive RSVP sequences.

for these three subjects versus 0.34 (STD = 0.22, n = 38) for
the others.

How the interaction between the CV and EEG interest
detector modules impacted overall system performance can
be seen in figures 2(a) and 3. Figure 2(a) shows how the
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Figure 4. Scalp maps of the mean forward model (averaged between all subjects) indicate the temporal and spatial contribution of useful
discriminatory information obtained from the EEG electrodes. Information between 300 and 500 ms (suggesting contributions by the P300
response) as well as early and longer latency activity was very useful to the EEG classifier, though the subjects showed considerable
variation in precisely which time windows were most heavily weighted by the logistic regression (the inset figure shows the mean and STD
of the temporal weights, equation (3), between subjects).

CV module performed better when the EEG module provided
flagged image sets of higher target precision, in particular
when the precision of the flagged image sets exceeded 0.2.
Similarly, figure 3 shows how the subjects usually generated
higher precision flagged image sets when there were more
target images in the RSVP, and increasing target prevalence
beyond chance levels depended on the CV module’s ability
to resample the database appropriately for subsequent RSVP
sequences, even in cases where it was unsure of the specific
target type. Interestingly, the performance gains in the
interest detector are less consistent when target prevalence
increases beyond 10–15%. This is reminiscent of P300 oddball
studies that have found the strength of the P300 response
increases for more infrequent target appearances [45–49], and
which commonly employ target probabilities of 20% or less.
While the interdependence between the HV and CV modules
could theoretically lead to situations in which each module
waited for the other to first achieve high performance, the
closed-loop aspect of this system allowed the modules to
gradually reinforce each other. Nonetheless, both modules’
independent capabilities were obviously important to overall
performance.

3.2. EEG interest detector module performance

The interest detector (equations (2) and (3)) successfully
detected patterns of EEG activity that specifically followed
the appearance of target images in the RSVP sequences.
Figure 4 shows the forward model (averaged between all
subjects) of the interest detector’s 11 spatial filters (each for a
100 ms time window) with the inset showing the temporal
weighting of these spatial components. Interestingly, the
spatial maps and temporal weights suggest that three EEG
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components make up the activity contributing to the EEG-
score. The first occurs 100–200 ms post-stimulus (notable in
the logistic regression weights), with a sign and a distributed
topology indicative of a visual N100. The N100 is an ERP
that has been observed for both visual and auditory stimulus
paradigms. It is present for unexpected stimuli independent of
tasks demands, and for visual stimuli it often reflects vigilance
and attention [50–52]. The second component is the late
positive complex, which appears to include both a P3a (fronto-
central activity) transitioning to a P300/P3b topology (central-
parietal). This is consistent with our previous findings [5] and
likely indicates that the composite EEG-score includes both
target- and novel-related activity—i.e. some of the images,
though targets, are completely new to the subject and may
evoke a strong attentional orientating response. As we
reported previously [5], we also see late activity with a central
topography. Since there is no behavioral response in our
experimental paradigm and the activity is not lateralized, it is
very unlikely that this is related to a covert motor process. This
late component has a topology that is somewhat consistent with
self-monitoring activity, such as the error-related negativity
(ERN), which is often associated with perceived error and/or
conflict [53, 54]. Interestingly, our experiments are such that
subjects often ‘realize’ that they saw or missed a target a few
images after the target image is presented, and thus there are
at least some reports of a self-monitoring or decision conflict
during the task. What is striking about this component is that
there is no overt/behavioral response—e.g. the ERN is usually
observed following a response. However, the RSVP nature of
the task potentially leads to a relatively precise time-locking
of neural processes underlying self-monitoring of decisions
which can be detected by our algorithm. Nonetheless,
additional experiments are needed to determine if this self-
monitoring component is indeed what we are observing.

The EEG interest detector module’s performance was
improved through its interaction with the CV module. If the
system had been run in an open-loop configuration, only the
first (500 random images) RSVP sequence would have been
utilized for each database search. The average area under
the ROC curve (Az) value for these open loop EEG scores
(all subjects, all searches) was 0.82 (STD = 0.13, n = 49),
significantly above chance (chance value is 0.5, one-sided
t-test, p � 0.001). However, despite these high Az scores,
there were often still significant numbers of false positives
in the image sets that were flagged under these conditions.
Through the closed loop, the interest detector module could
improve the precision of targets in the flagged image sets it
outputted. Figure 5(a) illustrates this when the search target
was ‘brain’. While in two searches only a single RSVP was
necessary for the system to identify the target category, for
eight of the other ten searches the final precision of target
images in the flagged image set was higher after using the
closed loop. Figure 5(b) shows overall (all subjects, all
searches involving more than a single RSVP) how the precision
of targets in the flagged image set under open loop conditions
was significantly lower than the final image set of the closed-
loop system (0.24 versus 0.42, one-sided t-test, p < 0.001,
n = 39). As such, the system typically took advantage of the
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Figure 5. Performance of the EEG interest detector typically
improved across successive RSVP sequences. This allowed the
closed-loop system to flag sets of interesting images of higher
precision than if the system had been operating in an open-loop
configuration; (a) shows for all the subjects how the precision of
targets in the image sets flagged by the interest detector varied
across each successive RSVP (target category: ‘brain’). As can be
seen, eight subjects (of the ten who needed more than a single RSVP
sequence) increased the precision of their flagged image set using
the closed-loop system; (b) shows the distributions of the precisions
of the flagged image sets after the first RSVP (hollow, mean = 0.24)
compared to the image sets when the system exited the
CL-C3Vision loop (solid, mean = 0.42) for all subjects and targets
in which there was more than one RSVP for the search.

closed-loop architecture (average number of RSVP sequences:
2.4, STD = 1.2, n = 49), with only ten searches involving a
single RSVP.

3.3. Computer vision (TAG) module performance

The TAG module was effective for both gradually growing
the prevalence of target images between subsequent RSVP
sequences, which did not involve self-tuning, and for the final
database reorganization, in which self-tuning was utilized. The
effectiveness of the TAG in both these capacities depended not
only on the precision of the example image sets provided by the
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Figure 6. How well categories were represented in the TAG affinity graph directly impacted system performance. To quantify how well the
TAG graph captured different image categories, simulations in which 20 images (of varying precision of the labeled input images) were
given to the TAG (100 simulations for each precision level, self-tuning of 25%) for all 62 target categories. The resulting AP for the target
category was used to quantify the TAG performance for each simulation. (a–c) Three examples (‘brain’, ‘grand piano’, and ‘lobster’
respectively) of how well the TAG reorganized the image database depending on input precision. The vertical columns in each of the plots
are histograms of the simulation results (target AP resulting from the TAG image ranks) for each input precision level. The solid lines
indicate the mean and STD of the APs between all the simulations for a given input precision, and the dashed lines show chance APs. (b) A
relatively common phenomenon in which the TAG performance for that image category depended on a distinct input set precision threshold.
The area under the simulation I/O curves was used to quantify the effectiveness of the TAG graph in capturing each image category (for
(a–c) the areas under the I/O curves were 0.38, 0.78, and 0.18, respectively). (d) The distribution of the area under the I/O plots for all
62 image categories.

EEG interest detector, but also on how well the TAG affinity
graph captured the various image categories. To quantify how
well image categories were represented in the TAG graph,
we ran a series of simulations in which we assessed how
useful TAG rankings were (when using 25% self-tuning) when
the fraction of target images within the example image set
given to the TAG (i.e. the input precision) varied. For each
category, 100 simulations were run for each of several different
input precisions (with the target and distractor images within
the example sets being randomly selected for a total of 20
images), and the resulting TAG ranks were used to calculate
the simulation output AP. Figures 6(a)–(c) show examples of
the resulting input/output (I/O) curves that reflect how well the
categories were represented by the TAG graph. ‘Brain’ is an
average category, ‘grand piano’ is a category well represented
by the graph, and ‘lobster’ is poorly captured (but we note
that even given small precision input sets for lobster, the TAG
would still often provide above chance results). The area
under each category’s I/O simulation curve summarizes how
well that category was represented in the TAG graph (mean =

0.36, STD = 0.21, n = 62), with the distribution shown in
figure 6(d). Notably, each category carried a better
representation than chance (chance value of the area under
the I/O curve corresponding to a category’s prevalence in
the database, with the average prevalence between categories
being 0.016). Figure 7 demonstrates how a category’s
representation in the TAG graph affected the performance of
the BCI system, as categories with stronger representations
did not require as high a precision of the input set to achieve
good search results.

The use of TAG (without self-tuning) to boost the number
of target images in the RSVP sequences helped ensure that
the image set outputted by the EEG module was of adequate
precision for the final database reorganization. Not utilizing
self-tuning for the TAG was appropriate in this context. This
is because when using self-tuning, the TAG output AP can
be very low when the input set precision is quite low (as can
be seen in figure 6), and this is not an unexpected occurrence
in early RSVP sequences, particularly for low-prevalence
categories or for subjects for whom the performance of
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Figure 7. The TAG graph representation of the target category and
the precision of the flagged image set outputted by the EEG interest
detector both affected overall system performance. The size of each
mark reflects the magnitude of the final AP for each of the search
tests (x’s are used for APs below 0.1). The vertical axis gives the
precision of the flagged image set provided by the interest detector
during the final RSVP in each search, while the horizontal axis is a
measure of how well the target categories of each search were
captured by the TAG graph (in terms of the area under the TAG
simulation I/O curves, see figure 6). When searches involved
categories that were weakly represented in the TAG graph, higher
precisions were necessary in the input image set for the system to
achieve good search results.

the EEG interest detector was only mediocre. Conversely,
figure 8(a) shows how in the TAG graph simulation tests, the
simulations not using self-tuning had many fewer instances of
the TAG output approaching chance (here AP values �0.05
are considered chance levels) compared to self-tuning when
the input precision was low (see the supplementary material
available at stacks.iop.org/JNE/8/036025/mmedia, figures S2
and S3). Consequently, in the actual test searches, the TAG
(with no self-tuning) worked similarly to a local analysis
query expansion in information retrieval searches [55], as it
constructed the closed-loop RSVPs around images directly
related in the TAG graph to the flagged image sets. Figure 8(b)
shows how this resulted in more target images in the closed-
loop RSVP sequences than would be expected by chance, so
long as the EEG interest detector module had outputted some
base level of performance (typically a flagged image precision
of 10% or better). This growth in target prevalence during
the RSVPs greatly enhanced the benefit of the closed-loop
aspect of the BCI architecture, as it made it easier for the EEG
interest detector to flag example input sets of higher precision
(figure 3). This in turn improved the self-tuning TAG
implementation when it was used for the final database
reorganization.

4. Discussion

The BCI presented here differs from previous C3Vision
systems in that it includes a closed-loop interaction
between the computer and HV components. The resulting
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Figure 8. TAG was effective for boosting the number of target
images in the closed-loop RSVP sequences. The precision of targets
in the image sets flagged by the interest detector is likely to be low
following early search RSVPs; thus, it is better to use TAG with no
self-tuning when creating the closed-loop RSVP sequences. The
benefit in not using self-tuning is shown in (a), which plots, for each
category, the fraction of the TAG graph simulation results (see
figure 6) that had a final output AP below .05 (i.e. the TAG
reorganization was approaching chance levels) when the precision
of the labeled input set was �0.2; (a) shows how simulations that
used 25% self-tuning were more likely to have poor outputs
compared to simulations in which no self-tuning was employed (the
hatched line shows the 1:1 relationship); (b) then shows how during
the search tests, TAG without self-tuning did provide closed-loop
RSVP sequences in which the prevalence of the target images was
clearly above chance (the hatched line indicates chance, i.e. the
mean target prevalence between all categories), so long as the
flagged image set had at least a few target images. The solid line is
the best-fit line (correlation coefficient = 0.66 with slope
significantly nonzero: t-test, p � 0.001).
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Figure 9. Combining the EEG interest detector and the CV in a
closed-loop configuration offered better performance than operating
each component serially in an open-loop, or simply using EEG
interest detection alone; (a) shows how the CL-C3Vision system
gave significantly higher APs (paired t-test p = 0.004, n = 49)
compared to simply using the EEG interest detector to rank images
(mean APs of 0.35 versus 0.26); in those tests, the AP achieved by
the EEG interest detector for the initial RSVP of 500 randomly
selected images was considered representative of how the detector
would have ranked the full database had all 3798 images actually
been shown to the users; (b) shows how the C3Vision system
reorganized the image database better when used in the full
closed-loop system than if it had been operating in an open-loop
fashion (mean APs of 0.34 versus 0.23, paired t-test p < 0.001,
n = 39, only searches in which there were more than a single RSVP
were compared). The open-loop results were obtained by
performing the final database reorganization based on the EEG
scores obtained from only the first RSVP. In both plots the hatched
lines show a 1:1 relationship.

CL-C3Vision system is not necessarily intended to act as
an assistive device for individuals with disabilities (although
nothing prevents it from being applied to such goals), but
rather is meant to improve an able-bodied user’s ability to
quickly locate images of interest in a large image database.
Figure 9 illustrates both how combining CV with EEG interest
measures improves the detection of interesting images, and

how the closed-loop aspect helps the system take better
advantage of the CV component. Furthermore, the CL-
C3Vision system boosts the benefit from those closed-loop
RSVPs by using the CV to adaptively resample the database to
emphasize images that are likely to be targets in the additional
RSVPs. This increases the information gained in each RSVP,
thus limiting the number of images that the user must view
and speeding the search task. It also allows the system to
refine its target information by accruing data from a small
but growing subset of images rather than relying on averaging
EEG information through repeated presentations of the same
images. This can help speed the search, as time is not spent
on repetitively showing a few images that may turn out to be
irrelevant.

4.1. Benefits of a closed-loop cortically-coupled computer
vision BCI in practical search tasks

CL-C3Vision systems could be useful for a variety of different
search tasks. While we tested the system using a search of a
relatively modestly sized image database, it could be applied
to much larger image databases, or even databases of different
types (such as video). Additionally, CL-C3Vision could be
of particular use if the search target were poorly defined, for
example, a search of a database of flowers for not a specific
type of flower, but rather simply for a flower that the user would
find attractive in a centerpiece (e.g. ‘I’m just looking for some
flowers that have attractive petals’). All that is really required
to use CL-C3Vision advantageously is a large, possibly poorly
organized or annotated (relative to the search goal) database,
from which samples can be reviewed at a high rate, and for
which it would be impractical or overly time consuming to
manually inspect each entry.

The full benefits of using a CL-C3Vision system would
then be dependent on both the size and the complexity of
the database, as well as the required parameters of the search
task. For example, in most cases, the user would likely want
to make a final review of the most highly ranked images to
select specific images. As the CL-C3Vision output is simply a
ranked list of the likelihood of each image being of interest, the
quantity of images included in this second pass would depend
on the specific goals of the search itself. If the user were simply
inspecting a database to find a few desirable images (such
as the flower search above), the second pass might simply
involve reviewing a small subset of database images whose
ranks fell well above the mean, similar to reviewing only the
first few pages of an internet search engine’s results. This could
allow the user to search a database of considerable size and
find essentially what they are looking for with a significant
time savings. Alternatively, a larger second pass would be
necessary if a more comprehensive search were desired in
which any image even remotely related to the flagged images
must be located. For example, in the current experiments,
output APs of about 0.5 or above (typically reflecting an over
tenfold improvement above chance) were often achieved. In
such cases, if the users had then needed to identify 50% of the
target images in these tests, they would have required a second
pass that included roughly 2.1% of the database images. This

11



J. Neural Eng. 8 (2011) 036025 E A Pohlmeyer et al

second pass would then grow to include as much as 38% of the
database if 90% of the images from the target category needed
to be manually reviewed by the subject following the use of
the CL-C3Vision.

4.2. Refining the CL-C3Vision system

Several factors resulted in the current system periodically
failing to identify the correct target category. The primary
factor was the EEG interest detector repeatedly outputting
flagged image sets with few target images. For the three
unsuccessful subjects previously noted in figure 2, this
appeared to be a consistent issue in system performance.
Among the other subjects’ eight failed searches, two also
appeared primarily related to the interest detector not flagging
target images adequately. In contrast, in another three, it
appeared that (even though the EEG interest detector produced
flagged image sets of reasonable precision) the TAG either
decreased the number of targets in the subsequent RSVPs, or
apparently focused the final database reorganization around a
different target category (or both). In two failed search cases,
the performances of both CV and EEG modules appeared
weak. Thus, excluding the three subjects that showed multiple
failures, there was a fairly even mix of the system suffering
from either a weakness in the EEG module, the TAG module,
or both when it failed to ID the target category. In the last
ID failure, in the tests presented here, the subject had chosen
to look for lobsters (S17 in figure 2), but instead seemed to
respond most strongly to images of crayfish (as well as a few
lobsters, which crayfish closely resemble), with the final BCI
prediction reflecting that tendency. This last case does not
really reflect a failure of the system, but rather highlights its
recognition of the user’s subjective response, rather than any
objective property of the images being viewed.

The above weaknesses suggest several means by which the
system can be improved. In particular, despite the benefits of
the closed-loop interaction between the EEG and CV modules,
their individual capabilities are still quite important. While
small numbers of individuals do seem to simply have more
difficulty in controlling BCI systems that use P300 ERPs
[25], a refined EEG interest detector that outputted better
precision image sets for more subjects would have avoided
most cases of incorrect target identification in our tests. Such
refinements could include better algorithms for single trial
detection of user interest, or perhaps focusing the current
algorithm to search for information specifically related to P300
events. This latter approach could include restricting time
windows or electrodes to those more likely to be relevant
to P300 to reduce the number of parameters, or perhaps
using specific P300 related variables (such as amplitude or
latency) in the interest detector. Alternatively, longer or better
training regimes should be attempted to explore whether the
current detector could become advantageous to more users.
For example, a 5 Hz presentation rate was used. While,
anecdotally, individuals well versed in the system can achieve
good results at faster rates (even 10 Hz), the 5 Hz rate was
felt to be reasonable for most naive subjects. However, half
of the subjects in this study reported that they felt that the

rate was a bit fast (although half of those subjects noted that
they became more comfortable with the rate over time). Using
subject-specific rates, especially in training when the rates
could be started slowly and then gradually increased, may
be useful. The effectiveness of using different quantities
and/or patterns of electrodes could also be explored. For
example, we compared the AP for the first RSVP of each
subject (target: ‘brain’) if data from only nine electrodes
(locations: POz, Fz, Cz, C3, C4, F3, F4, P3, P4) had been
used in the classifier instead of the full set of 64 electrodes.
The average drop in AP when switching to nine electrodes
was only 13%, with four subjects having better results with 9
electrodes than 64. Also, accounting for blinking in individual
subjects may improve system performance. While in this
work subjects who appeared to generate eye movements
preferentially following target images were eliminated, no
attempt was made to address the consequences of the other
subjects blinking and thus missing a target, or perhaps missing
a target due to an attentional blink [56] resulting from the
appearance of a previous target image. Future studies should
consider these issues, particularly if the RSVP rate is increased.

In addition to improving the EEG interest detector,
the computer vision module could be improved. While it
appears that only three failures in this work resulted from
the target category being weakly represented in the TAG
graph (the mean value of the TAG simulation I/O metric
for those three categories was 0.3, while that for successful
search target categories was 0.5), as many as 35 categories
could be challenging to identify (i.e. have I/O metrics �0.3,
figures 6 and 7) if chosen as search targets. The TAG
module could be improved by using an affinity graph specific
to the image database (the current graph was constructed
indifferently to the types of images known to be in the
database), or by making a more studied use of TAG self-
tuning (rather than using a single fixed value of 25%).
Additionally, entirely different computer vision techniques
could be explored, possibly with different CV methods being
used for one or more of the tasks currently assigned to the TAG
(assessing flagged image similarity, boosting target presence in
subsequent RSVPs, and performing the final database ranking)
for an overall improvement in the performance of the CV
module.

5. Conclusions

In this paper, we have presented a BCI that uses cortically-
coupled computer vision (C3Vision) to find images of interest
in a large image database. This system modifies previous
C3Vision systems by including a closed-loop interaction
between the human and computer vision system components.
This allows the system to query the user for more information
when necessary to effectively search for the target image
category. Furthermore, the adaptive resampling used for
those queries helped maximize the information gained from
each closed-loop interaction, reducing the number of images
reviewed by the user and speeding the search task. The
resulting system proved effective in reorganizing the test
database to expedite searches for a diverse set of image
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categories that were either assigned to or freely chosen by
the BCI users as search targets. In many cases these benefits
exceeded tenfold improvements over chance, and the system
proved capable of inferring the user’s intent and identifying
the specific image category that had been chosen as the
search target. While there are still many aspects of the CL-
C3Vision system that could be improved, this study suggests
that such closed-loop BCI systems will potentially be useful
for assisting individuals to deal with the deluge of imagery
they are confronted with in their everyday lives.
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