Tagged: Spatial resolution

Fusing multiple neuroimaging modalities to assess group differences in perception-action coupling

In the last few decades, noninvasive neuroimaging has revealed macroscale brain dynamics that underlie perception, cognition, and action. Advances in noninvasive neuroimaging target two capabilities: 1) increased spatial and temporal resolution of measured neural activity; and 2) innovative methodologies to extract brain–behavior relationships from evolving neuroimaging technology. We target the second. Our novel methodology integrated three neuroimaging methodologies and elucidated expertise-dependent differences in functional (fused EEG-fMRI) and structural (dMRI) brain networks for a perception–action coupling task. A set of baseball players and controls performed a Go/No-Go task designed to mimic the situation of hitting a baseball. In the functional analysis, our novel fusion methodology identifies 50-ms windows with predictive EEG neural correlates of expertise and fuses these temporal windows with fMRI activity in a whole-brain 2-mm voxel analysis, revealing time-localized correlations of expertise at a spatial scale of millimeters. The spatiotemporal cascade of brain activity reflecting expertise differences begins as early as 200 ms after the pitch starts and lasts up to 700 ms afterwards. Network differences are spatially localized to include motor and visual processing areas, providing evidence for differences in perception–action coupling between the groups. Furthermore, an analysis of structural connectivity reveals that the players have significantly more connections between cerebellar and left frontal/motor regions, and many of the functional activation differences between the groups are located within structurally defined network modules that differentiate expertise. In short, our novel method illustrates how multimodal neuroimaging can provide specific macroscale insights into the functional and structural correlates of expertise development.

Comparison of supervised and unsupervised linear methods for recovering task-relevant activity in EEG

In this paper we compare three linear methods, independent component analysis (ICA), common spatial patterns (CSP), and linear discrimination (LD) for recovering task relevant neural activity from high spatial density electroencephalography (EEG). Each linear method uses a different objective function to recover underlying source components by exploiting statistical structure across a large number of sensors. We test these methods using a dual-task event-related paradigm. While engaged in a primary task, subjects must detect infrequent changes in the visual display, which would be expected to evoke several well-known event-related potentials (ERPs), including the N2 and P3. We find that though each method utilizes a different objective function, they in fact yield similar components. We note that one advantage of the LD approach is that the recovered component is easily interpretable, namely it represents the component within a given time window which is most discriminating for the task, given a spatial integration of the sensors. Both ICA and CSP return multiple components, of which the most discriminating component may not be the first. Thus, for these methods, visual inspection or additional processing is required to determine the significance of these components for the task.