Tagged: Source separation

Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain

We present an algorithm for blindly recovering constituent source spectra from magnetic resonance (MR) chemical shift imaging (CSI) of the human brain. The algorithm, which we call constrained nonnegative matrix factorization (cNMF), does not enforce independence or sparsity, instead only requiring the source and mixing matrices to be nonnegative. It is based on the nonnegative matrix factorization (NMF) algorithm, extending it to include a constraint on the positivity of the amplitudes of the recovered spectra. This constraint enables recovery of physically meaningful spectra even in the presence of noise that causes a significant number of the observation amplitudes to be negative. We demonstrate and characterize the algorithm’s performance using /sup 31/P volumetric brain data, comparing the results with two different blind source separation methods: Bayesian spectral decomposition (BSD) and nonnegative sparse coding (NNSC). We then incorporate the cNMF algorithm into a hierarchical decomposition framework, showing that it can be used to recover tissue-specific spectra given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the hierarchical procedure on /sup 1/H brain data and conclude that the computational efficiency of the algorithm makes it well-suited for use in diagnostic work-up.

Classifying single-trial ERPs from visual and frontal cortex during free viewing

Event-related potentials (ERPs) recorded at the scalp are indicators of brain activity associated with event-related information processing; hence they may be suitable for the assessment of changes in cognitive processing load. While the measurement of ERPs in a laboratory setting and classifying those ERPs is trivial, such a task presents major challenges in a “real world” setting where the EEG signals are recorded when subjects freely move their eyes and the sensory inputs are continuously, as opposed to discretely presented. Here we demonstrate that with the aid of second-order blind identification (SOBI), a blind source separation (BSS) algorithm: (1) we can extract ERPs from such challenging data sets; (2) we were able to obtain meaningful single-trial ERPs in addition to averaged ERPs; and (3) we were able to estimate the spatial origins of these ERPs. Finally, using back-propagation neural networks as classifiers, we show that these single-trial ERPs from specific brain regions can be used to determine moment-to-moment changes in cognitive processing load during a complex “real world” task.