Tagged: single-trial analysis

Musical experts recruit action-related neural structures in harmonic anomaly detection: Evidence for embodied cognition in expertise

Humans are extremely good at detecting anomalies in sensory input. For example, while listening to a piece of Western-style music, an anomalous key change or an out-of-key pitch is readily apparent, even to the non-musician. In this paper we investigate differences between musical experts and non-experts during musical anomaly detection. Specifically, we analyzed the electroencephalograms (EEG) of five expert cello players and five non-musicians while they listened to excerpts of J.S. Bach’s Prelude from Cello Suite No. 1. All subjects were familiar with the piece, though experts also had extensive experience playing the piece. Subjects were told that anomalous musical events (AMEs) could occur at random within the excerpts of the piece and were told to report the number of AMEs after each excerpt. Furthermore, subjects were instructed to remain still while listening to the excerpts and their lack of movement was verified via visual and EEG monitoring. Experts had significantly better behavioral performance (i.e. correctly reporting AME counts) than non-experts, though both groups had mean accuracies greater than 80%. These group differences were also reflected in the EEG correlates of key-change detection post-stimulus, with experts showing more significant, greater magnitude, longer periods of, and earlier peaks in condition-discriminating EEG activity than novices. Using the timing of the maximum discriminating neural correlates, we performed source reconstruction and compared significant differences between cellists and non-musicians. We found significant differences that included a slightly right lateralized motor and frontal source distribution. The right lateralized motor activation is consistent with the cortical representation of the left hand – i.e. the hand a cellist would use, while playing, to generate the anomalous key-changes. In general, these results suggest that sensory anomalies detected by experts may in fact be partially a result of an embodied cognition, with a model of the action for generating the anomaly playing a role in its detection.

Single-trial Analysis of Neuroimaging Data: Inferring Neural Networks Underlying Perceptual, Decision Making in the Human Brain

Advances in neural signal and image acquisition as well as in multivariate signal processing and machine learning are enabling a richer and more rigorous understanding of the neural basis of human decision-making. Decision-making is essentially characterized behaviorally by the variability of the decision across individual trials—e.g., error and response time distributions. To infer the neural processes that govern decision-making requires identifying neural correlates of such trial-to-trial behavioral variability. In this paper, we review efforts that utilize signal processing and machine learning to enable single-trial analysis of neural signals acquired while subjects perform simple decision-making tasks. Our focus is on neuroimaging data collected noninvasively via electroencephalograpy (EEG) and functional magnetic resonance imaging (fMRI). We review the specific frame-work for extracting decision-relevant neural components from the neuroimaging data, the goal being to analyze the trial-to-trial variability of the neural signal along these component directions and to relate them to elements of the decision-making process. We review results for perceptual decision-making and discrimination tasks, including paradigms in which EEG variability is used to inform an fMRI analysis. We discuss how single-trial analysis reveals aspects of the underlying decision-making networks that are unobservable using traditional trial-averaging methods.

Single-trial discrimination for integrating simultaneous EEG and fMRI: Identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task

The auditory oddball task is a well-studied stimulus paradigm used to investigate the neural correlates of simple target detection. It elicits several classic event-related potentials (ERPs), the most prominent being the P300 which is seen as a neural correlate of subjects’ detection of rare (target) stimuli. Though trial-averaging is typically used to identify and characterize such ERPs, their latency and amplitude can vary on a trial-to-trial basis reflecting variability in the underlying neural information processing. Here we simultaneously recorded EEG and fMRI during an auditory oddball task and identified cortical areas correlated with the trial-to-trial variability of task-discriminating EEG components. Unique to our approach is a linear multivariate method for identifying task-discriminating components within specific stimulus- or response-locked time windows. We find fMRI activations indicative of distinct processes that contribute to the single-trial variability during target detection. These regions are different from those found using standard, including trial-averaged, regressors. Of particular note is the strong activation of the lateral occipital complex (LOC). The LOC was not seen when using traditional event-related regressors. Though LOC is typically associated with visual/spatial attention, its activation in an auditory oddball task, where attention can wax and wane from trial to trial, indicates that it may be part of a more general attention network involved in allocating resources for target detection and decision making. Our results show that trial-to-trial variability in EEG components, acquired simultaneously with fMRI, can yield task-relevant BOLD activations that are otherwise unobservable using traditional fMRI analysis.

Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram

When does the brain know that a decision is difficult to make? How does decision difficulty affect the allocation of neural resources and timing of constituent cortical processing? Here, we use single-trial analysis of electroencephalography (EEG) to identify neural correlates of decision difficulty and relate these to neural correlates of decision accuracy. Using a cued paradigm, we show that we can identify a component in the EEG that reflects the inherent task difficulty and not simply a correlation with the stimulus. We find that this decision difficulty component arises ≈220 ms after stimulus presentation, between two EEG components that are predictive of decision accuracy [an “early” (170 ms) and a “late” (≈300 ms) component]. We use these results to develop a timing diagram for perceptual decision making and relate the component activities to parameters of a diffusion model for decision making.