Tagged: Neurophysiology

Analysis of a gain control model of V1: Is the goal redundancy reduction?

In this paper we analyze a popular divisive normalization model of V1 with respect to the relationship between its underlying coding strategy and the extraclassical physiological responses of its constituent modeled neurons. Specifically we are interested in whether the optimization goal of redundancy reduction naturally leads to reasonable neural responses, including reasonable distributions of responses. The model is trained on an ensemble of natural images and tested using sinusoidal drifting gratings, with metrics such as suppression index and contrast dependent receptive field growth compared to the objective function values for a sample of neurons. We find that even though the divisive normalization model can produce “typical” neurons that agree with some neurophysiology data, distributions across samples do not agree with experimental data. Our results suggest that redundancy reduction itself is not necessarily causal of the observed extraclassical receptive field phenomena, and that additional optimization dimensions and/or biological constraints must be considered.