Tagged: MRI

Removal of BCG artifacts using a non-Kirchhoffian overcomplete representation

We present a nonlinear unmixing approach for extracting the ballistocardiogram (BCG) from EEG recorded in an MR scanner during simultaneous acquisition of functional MRI (fMRI). First, an overcomplete basis is identified in the EEG based on a custom multipath EEG electrode cap. Next, the overcomplete basis is used to infer non-Kirchhoffian latent variables that are not consistent with a conservative electric field. Neural activity is strictly Kirchhoffian while the BCG artifact is not, and the representation can hence be used to remove the artifacts from the data in a way that does not attenuate the neural signals needed for optimal single-trial classification performance. We compare our method to more standard methods for BCG removal, namely independent component analysis and optimal basis sets, by looking at single-trial classification performance for an auditory oddball experiment. We show that our overcomplete representation method for removing BCG artifacts results in better single-trial classification performance compared to the conventional approaches, indicating that the derived neural activity in this representation retains the complex information in the trial-to-trial variability.

EEG-Informed fMRI Reveals Spatiotemporal Characteristics of Perceptual Decision Making

Single-unit and multiunit recordings in primates have already established that decision making involves at least two general stages of neural processing: representation of evidence from early sensory areas and accumulation of evidence to a decision threshold from decision-related regions. However, the relay of information from early sensory to decision areas, such that the accumulation process is instigated, is not well understood. Using a cued paradigm and single-trial analysis of electroencephalography (EEG), we previously reported on temporally specific components related to perceptual decision making. Here, we use information derived from our previous EEG recordings to inform the analysis of fMRI data collected for the same behavioral task to ascertain the cortical origins of each of these EEG components. We demonstrate that a cascade of events associated with perceptual decision making takes place in a highly distributed neural network. Of particular importance is an activation in the lateral occipital complex implicating perceptual persistence as a mechanism by which object decision making in the human brain is instigated.