Tagged: machine learning

Single-trial Analysis of Neuroimaging Data: Inferring Neural Networks Underlying Perceptual, Decision Making in the Human Brain

Advances in neural signal and image acquisition as well as in multivariate signal processing and machine learning are enabling a richer and more rigorous understanding of the neural basis of human decision-making. Decision-making is essentially characterized behaviorally by the variability of the decision across individual trials—e.g., error and response time distributions. To infer the neural processes that govern decision-making requires identifying neural correlates of such trial-to-trial behavioral variability. In this paper, we review efforts that utilize signal processing and machine learning to enable single-trial analysis of neural signals acquired while subjects perform simple decision-making tasks. Our focus is on neuroimaging data collected noninvasively via electroencephalograpy (EEG) and functional magnetic resonance imaging (fMRI). We review the specific frame-work for extracting decision-relevant neural components from the neuroimaging data, the goal being to analyze the trial-to-trial variability of the neural signal along these component directions and to relate them to elements of the decision-making process. We review results for perceptual decision-making and discrimination tasks, including paradigms in which EEG variability is used to inform an fMRI analysis. We discuss how single-trial analysis reveals aspects of the underlying decision-making networks that are unobservable using traditional trial-averaging methods.

Quality of Evidence for Perceptual Decision Making is Indexed by Trial-to-Trial Variability of the EEG

A fundamental feature of how we make decisions is that our responses are variable in the choices we make and the time it takes to make them. This makes it impossible to determine, for a single trial of an experiment, the quality of the evidence on which a decision is based. Even for stimuli from a single experimental condition, it is likely that stimulus and encoding differences lead to differences in the quality of evidence. In the research reported here, with a simple “face”/”car” perceptual discrimination task, we obtained late (decision-related) and early (stimulus-related) single-trial EEG component amplitudes that discriminated between faces and cars within and across conditions. We used the values of these amplitudes to sort the response time and choice within each experimental condition into more-face-like and less-face-like groups and then fit the diffusion model for simple decision making (a well-established model in cognitive psychology) to the data in each group separately. The results show that dividing the data on a trial-by-trial basis by using the late-component amplitude produces differences in the estimates of evidence used in the decision process. However, dividing the data on the basis of the early EEG component amplitude or the times of the peak amplitudes of either component did not index the information used in the decision process. The results we present show that a single-trial EEG neurophysiological measure for nominally identical stimuli can be used to sort behavioral response times and choices into those that index the quality of decision-relevant evidence.