Tagged: Enterprise resource planning

Classifying single-trial ERPs from visual and frontal cortex during free viewing

Event-related potentials (ERPs) recorded at the scalp are indicators of brain activity associated with event-related information processing; hence they may be suitable for the assessment of changes in cognitive processing load. While the measurement of ERPs in a laboratory setting and classifying those ERPs is trivial, such a task presents major challenges in a “real world” setting where the EEG signals are recorded when subjects freely move their eyes and the sensory inputs are continuously, as opposed to discretely presented. Here we demonstrate that with the aid of second-order blind identification (SOBI), a blind source separation (BSS) algorithm: (1) we can extract ERPs from such challenging data sets; (2) we were able to obtain meaningful single-trial ERPs in addition to averaged ERPs; and (3) we were able to estimate the spatial origins of these ERPs. Finally, using back-propagation neural networks as classifiers, we show that these single-trial ERPs from specific brain regions can be used to determine moment-to-moment changes in cognitive processing load during a complex “real world” task.

Comparison of supervised and unsupervised linear methods for recovering task-relevant activity in EEG

In this paper we compare three linear methods, independent component analysis (ICA), common spatial patterns (CSP), and linear discrimination (LD) for recovering task relevant neural activity from high spatial density electroencephalography (EEG). Each linear method uses a different objective function to recover underlying source components by exploiting statistical structure across a large number of sensors. We test these methods using a dual-task event-related paradigm. While engaged in a primary task, subjects must detect infrequent changes in the visual display, which would be expected to evoke several well-known event-related potentials (ERPs), including the N2 and P3. We find that though each method utilizes a different objective function, they in fact yield similar components. We note that one advantage of the LD approach is that the recovered component is easily interpretable, namely it represents the component within a given time window which is most discriminating for the task, given a spatial integration of the sensors. Both ICA and CSP return multiple components, of which the most discriminating component may not be the first. Thus, for these methods, visual inspection or additional processing is required to determine the significance of these components for the task.