Tagged: Brain

Multiresolution hierarchical blind recovery of biochemical markers of brain cancer in MRSI

We present a multi-resolution hierarchical application of the constrained non-negative matrix factorization (cNMF) algorithm for blindly recovering constituent source spectra in magnetic resonance spectroscopic imaging (MRSI). cNMF is an extension of non-negative matrix factorization (NMF) that includes a positivity constraint on amplitudes of recovered spectra. We apply cNMF hierarchically, with spectral recovery and subspace reduction constraining which observations are used in the next level of processing. The decomposition model recovers physically meaningful spectra which are highly tissue-specific, for example spectra indicative of tumor proliferation, given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the decomposition procedure on /sup 1/H long TE brain MRS data. The results show recovery of markers for normal brain tissue, low proliferative tissue and highly proliferative tissue. The coarse-to-fine hierarchy also makes the algorithm computationally efficient, thus it is potentially well-suited for use in diagnostic work-up.

Classifying single-trial ERPs from visual and frontal cortex during free viewing

Event-related potentials (ERPs) recorded at the scalp are indicators of brain activity associated with event-related information processing; hence they may be suitable for the assessment of changes in cognitive processing load. While the measurement of ERPs in a laboratory setting and classifying those ERPs is trivial, such a task presents major challenges in a “real world” setting where the EEG signals are recorded when subjects freely move their eyes and the sensory inputs are continuously, as opposed to discretely presented. Here we demonstrate that with the aid of second-order blind identification (SOBI), a blind source separation (BSS) algorithm: (1) we can extract ERPs from such challenging data sets; (2) we were able to obtain meaningful single-trial ERPs in addition to averaged ERPs; and (3) we were able to estimate the spatial origins of these ERPs. Finally, using back-propagation neural networks as classifiers, we show that these single-trial ERPs from specific brain regions can be used to determine moment-to-moment changes in cognitive processing load during a complex “real world” task.

Multi-resolution hierarchical blind recovery of biochemical markers of brain cancer in MRSI

We present a multi-resolution hierarchical application of the constrained non-negative matrix factorization (cNMF) algorithm for blindly recovering constituent source spectra in magnetic resonance spectroscopic imaging (MRSI). cNMF is an extension of non-negative matrix factorization (NMF) that includes a positivity constraint on amplitudes of recovered spectra. We apply cNMF hierarchically, with spectral recovery and subspace reduction constraining which observations are used in the next level of processing. The decomposition model recovers physically meaningful spectra which are highly tissue-specific, for example spectra indicative of tumor proliferation, given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the decomposition procedure on /sup 1/H long TE brain MRS data. The results show recovery of markers for normal brain tissue, low proliferative tissue and highly proliferative tissue. The coarse-to-fine hierarchy also makes the algorithm computationally efficient, thus it is potentially well-suited for use in diagnostic work-up.