Tagged: Brain computer interfaces

Brain-computer interfaces

The human brain is perhaps the most fascinating and complex signal processing machine in existence. It is capable of transducing a variety of environmental signals (the senses, including taste, touch, smell, sound, and sight) and extracting information from these disparate signal streams, ultimately fusing this information to enable behavior, cognition, and action. What is perhaps surprising is that the basic signal processing elements of the brain, i.e., neurons, transmit information at a relatively slow rate compared to transistors, switching about 106 times slower in fact. The brain has the advantage of having a tremendous number of neurons, all operating in parallel, and a highly distributed memory system of synapses (over 100 trillion in the cerebral cortex) and thus its signal processing capabilities may largely arise from its unique architecture. These facts have inspired a great deal of study of the brain from a signal processing perspective. Recently, scientists and engineers have focused on developing means in which to directly interface with the brain, essentially measuring neural signals and decoding them to augment and emulate behavior. This research area has been termed brain computer interfaces and is the topic of this issue of IEEE Signal Processing Magazine.

Advanced Technologies for Brain Research [Scanning the Issue]

We believe that this special issue will serve to increase the public awareness and foster discussions on the multiple worldwide BRAIN initiatives, both within and outside the IEEE, providing an impetus for development of long-term cost-effective healthcare solutions. We also believe that the topics presented in this special issue will serve as scientific evidence for health and policy advocates of the value of neurotechnologies for improving the neurological and mental health and wellbeing of the general population. Below we briefly highlight the papers and technologies in this special issue.

The Bilinear Brain: Towards Subject‐Invariant Analysis

A major challenge in single-trial electroencephalography (EEG) analysis and Brain Computer Interfacing (BCI) is the so called, inter-subject/inter-session variability: (i.e large variability in measurements obtained during different recording sessions). This variability restricts the number of samples available for single-trial analysis to a limited number that can be obtained during a single session. Here we propose a novel method that distinguishes between subject-invariant features and subject-specific features, based on a bilinear formulation. The method allows for one to combine multiple recording of EEG to estimate the subject-invariant parameters, hence addressing the issue of inter-subject variability, while reducing the complexity of estimation for the subject-specific parameters. The method is demonstrated on 34 datasets from two different experimental paradigms: Perception categorization task and Rapid Serial Visual Presentation (RSVP) task. We show significant improvements in classification performance over state-of-the-art methods. Further, our method extracts neurological components never before reported on the RSVP thus demonstrating the ability of our method to extract novel neural signatures from the data.