Tagged: blind source separation

Classifying single-trial ERPs from visual and frontal cortex during free viewing

Event-related potentials (ERPs) recorded at the scalp are indicators of brain activity associated with event-related information processing; hence they may be suitable for the assessment of changes in cognitive processing load. While the measurement of ERPs in a laboratory setting and classifying those ERPs is trivial, such a task presents major challenges in a “real world” setting where the EEG signals are recorded when subjects freely move their eyes and the sensory inputs are continuously, as opposed to discretely presented. Here we demonstrate that with the aid of second-order blind identification (SOBI), a blind source separation (BSS) algorithm: (1) we can extract ERPs from such challenging data sets; (2) we were able to obtain meaningful single-trial ERPs in addition to averaged ERPs; and (3) we were able to estimate the spatial origins of these ERPs. Finally, using back-propagation neural networks as classifiers, we show that these single-trial ERPs from specific brain regions can be used to determine moment-to-moment changes in cognitive processing load during a complex “real world” task.

Machine learning for detection and diagnosis of disease

Machine learning offers a principled approach for developing sophisticated, automatic, and objective algorithms for analysis of high-dimensional and multimodal biomedical data. This review focuses on several advances in the state of the art that have shown promise in improving detection, diagnosis, and therapeutic monitoring of disease. Key in the advancement has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review describes recent developments in machine learning, focusing on supervised and unsupervised linear methods and Bayesian inference, which have made significant impacts in the detection and diagnosis of disease in biomedicine. We describe the different methodologies and, for each, provide examples of their application to specific domains in biomedical diagnostics.