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A fundamental feature of how we make decisions is that our
responses are variable in the choices we make and the time it takes
to make them. This makes it impossible to determine, for a single
trial of an experiment, the quality of the evidence on which a
decision is based. Even for stimuli from a single experimental
condition, it is likely that stimulus and encoding differences lead to
differences in the quality of evidence. In the research reported
here, with a simple ‘‘face’’/‘‘car’’ perceptual discrimination task, we
obtained late (decision-related) and early (stimulus-related) single-
trial EEG component amplitudes that discriminated between faces
and cars within and across conditions. We used the values of these
amplitudes to sort the response time and choice within each
experimental condition into more-face-like and less-face-like
groups and then fit the diffusion model for simple decision making
(a well-established model in cognitive psychology) to the data in
each group separately. The results show that dividing the data on
a trial-by-trial basis by using the late-component amplitude pro-
duces differences in the estimates of evidence used in the decision
process. However, dividing the data on the basis of the early EEG
component amplitude or the times of the peak amplitudes of either
component did not index the information used in the decision
process. The results we present show that a single-trial EEG
neurophysiological measure for nominally identical stimuli can be
used to sort behavioral response times and choices into those that
index the quality of decision-relevant evidence.

diffusion-model � single-trial � neuroimaging � machine learning �
visual discrimination

Understanding the behavioral significance of trial-to-trial
variability in neural activity is central to systems neuro-

science in general, and the neural bases of decision making in
particular. Distinguishing between variability that is functionally
significant and variability that is simply noise is a key challenge.
In this article, we show how sources of variability can be
distinguished from each other by combining neurophysiological
data with behavioral data and a diffusion model of simple
decision making (1–5). This model identifies 4 different sources
of variability in processing: within-trial variability, trial-to-trial
variability in the evidence accumulated from nominally identical
stimuli, trial-to-trial variability in the starting point of the
decision process, and trial-to-trial variability in the duration of
nondecision components of processing. Distinguishing these
sources of variability is necessary to accurately model behavioral
data, but there has been no independent way to measure their
neurophysiological correlates. Here, we use single-trial analyses
of EEG data and map behavior directly to EEG signals.

We present new analyses of data from a face/car perceptual
discrimination experiment (Fig. 1A). Previously, research has
shown that 2 single-trial EEG components discriminate between
face and car stimuli (6, 7, 8). In ref. 6, stimuli were presented for
30 ms, and difficulty was manipulated by varying the spatial-
phase coherence of the stimuli from 20% to 45% in 6 steps so
that accuracy spanned the range from near 50% to near 100%
correct. The EEG data were collected from multiple sensors as

subjects performed the face/car task. Logistic regression with
linear weighting of the electrode signals was applied to the data
from all of the experimental trials to identify 2 component
(amplitude) measures in 2 different time windows that discrim-
inated well among the stimulus conditions (see Materials and
Methods for details). The analyses identified an early component
that occurred around 170 ms after stimulus presentation and a
late component that occurred around 300 ms after stimulus
presentation (Fig. 1B). This analysis applied to an individual trial
produces a measurement of the component amplitude (Fig. 1C).
Both components can be thought of as indexing stimulus quality,
in that a high positive amplitude reflects an easy face stimulus,
an amplitude near zero reflects a difficult stimulus, and a high
negative amplitude reflects an easy car stimulus. However, the
early-component amplitude is unaffected when the same stimuli
are colored red or green and the task is switched to color
discrimination. This indicates that this component represents
the quality of the incoming sensory evidence (7). In contrast, the
late-component amplitude is reduced almost to zero when the
task is switched, indicating that it indexes decision-relevant
evidence in a later stage of the face-vs.-car decision process.

To provide an explanation of the behavioral data for face/car
decisions (7), the diffusion model (1–5), which was developed to
account for processing in simple, 2-choice decision making, was
fit to the behavioral data. The model is dynamic; evidence is
accumulated over time from a starting point to 1 of 2 decision
criteria corresponding to the 2 choices. The process is noisy, and
replications with exactly the same parameters will produce error
responses, correct responses, and response time (RT) distribu-
tions (Fig. 2A). The model decomposes RTs and accuracy into
components of processing that reflect the quality of evidence
driving the decision process (drift rate), the amount of evidence
required to make a decision (decision criteria), and the duration
of nondecision processes, such as encoding and response pro-
duction. For the diffusion model to fit accuracy and RT data,
especially error RTs, there must be variability across trials in
each of the components of processing. Monte Carlo studies (9)
have shown that when fitting the model to simulated data, the
sources of variability are identified appropriately; for example,
across-trial variability in the starting point of the process (equiv-
alent to across-trial variability in the decision criteria) is not
misidentified as across-trial variability in drift rate. Our focus
here is on drift rate, which varies from trial to trial (1), as in signal
detection theory (Fig. 2B).

In ref. 7, the diffusion model was fit to the behavioral data
from the face/car discrimination task under the assumption that
although a stimulus is presented briefly, drift rate is constant
over the time course of evidence accumulation, reflecting output
from a stable representation in visual short-term memory (7, 10,
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11). This assumption is required by the behavioral data. If the
drift rate rose and fell with the brief stimulus presentation, then
the starting point would effectively move toward the criterion for
a correct response, thus increasing the distance to the criterion
for an incorrect response, and hence producing errors that are
much slower than correct responses and much slower than the
observed error RTs (see ref. 10 for details). In ref. 7, the model
fit accuracy and RT distributions well for all levels of phase
coherence. For the late-EEG component, drift rate was corre-
lated with the discriminability index, Az, across conditions and
subjects (r � 0.86). Az for a component is the area under a
receiver-operating characteristic curve (ROC) constructed from
the distributions of the component amplitudes for correct and
error responses. Az is derived from all of the trials in a condition,
and so it cannot be used for single-trial analyses (however, it is
linearly related to the mean component amplitude, so conclu-
sions about mean amplitude also apply to Az).

In ref. 7, no analysis was presented that examined the rela-
tionship between the single-trial amplitudes for the test items
within each experimental condition to the model or to the
behavioral data. Moreover, as demonstrated below, the corre-
lation between mean component amplitude and drift rate across
trials can remain high even when single-trial correlations are
absent. Fig. 1C illustrates substantial trial-to-trial variability in
both early and late components. Below, by sorting data based on
single-trial component amplitudes, we establish a direct rela-
tionship between the late-component amplitude and drift rate at
the single-trial level.

Results
Using the data from ref. 6, for each subject we calculated the
correlation between drift rate and mean component amplitude
across conditions and the correlation between the mean early-
and late-component amplitudes. The correlations were averaged

0 5 10 15 20 25 30 35 40 45
−5
−4
−3
−2
−1
0
1
2
3
4
5

Early Faces
Late Faces

Early Cars
Late Cars

Trials

y tr
ai

n
in

g
 w

in
d

ow
Late C

o
m

p
o

n
en

t y

0 4 8FrequencyMean y Amplitude Within Training Window

Early Component Late Component

yfaces

ycars

      0           .2           .4           .6           .8           1
               Stimulus Locked Time (sec) 

Tr
ia

ls
Tr

ia
ls

      0           .2           .4           .6           .8           1
               Stimulus Locked Time (sec) 

A

B

% Phase Coherence

45%40%35%

30%25%20%

Fixate
Discriminate

Respond
Discriminate

Respond

Time

30 ms

30 ms
1.5-2 s

1.5-2 s . . .

+

Better Face

Worse Face

C

Fig. 1. Behavioral design and single-trial analysis of the EEG. (A) A depiction of the behavioral paradigm (Left) and sample face stimuli at different levels of
coherence (Right). (B) An example of discriminant component maps for 1 subject for the 40% phase coherence condition. The 4 panels represent the face-vs.-car
discriminator amplitude (y) for the early and late components for face and car trials using the training windows shown by the vertical white bars. Trials are ordered
from top to bottom on the basis of the RT for the trial, and RTs are shown by the black sigmoidal curves. Face-like trials were mapped to positive amplitudes
(red), and car-like trials were mapped to negative amplitudes (blue). (C) Mean amplitudes (y bar) for the early and late components for each trial for faces and
cars at 40% phase coherence. The x axis shows the position of a trial among all of the 40% coherence trials for 1 subject. The late-component amplitudes from
the Left are shown as a histogram in the Right panel, with a cutoff (the thick black line) to separate trials into more positive amplitudes, or ‘‘better’’ faces, vs.
less positive amplitudes, or ‘‘worse’’ faces. These single-trial amplitudes were used to sort the data from each stimulus condition into 2 groups: those with a more
positive amplitude vs. those with a less positive amplitude. The diffusion model was then used to fit the behavioral data from these 2 groups for each condition
for each subject.
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over subjects for the early component and drift rate (r � 0.86),
for the late component and drift rate (r � 0.86), and for the early
and late components (r � 0.93).

If, instead of computing the correlation across the early- and
late-component mean amplitudes across conditions, we compute
the correlation between the early- and late-component ampli-
tudes within each condition and then average over subjects and
conditions, the correlation drops to r � 0.17. The 0.93 correla-
tion shows that the means of the component amplitudes change
systematically over conditions in the same way, but the 0.17
correlation shows that within a single condition, the component
amplitudes do not line up in the same way.

To illustrate the distributions of component amplitudes, we
chose 6 of the 12 conditions for which they are well separated.

Fig. 2 D and E shows schematic distributions of the early and late
components for these 6 conditions. The distributions of com-
ponent amplitudes are symmetric (2 sample histograms are
shown in Fig. 1C), so we computed means and standard devia-
tions for each condition and subject, averaged over subjects, and
then used these means and standard deviations to generate the
normal distributions that are shown in Fig. 2 D and E.

We examined whether the trial-to-trial amplitudes of either of
the 2 components can be related to the behavioral data. We
sorted the trials within each condition of the experiment into 2
groups: those with more positive amplitudes and those with less
positive amplitudes (conceptually dividing the distribution up as
in Fig. 2B). We then applied the diffusion model to the behav-
ioral data (RTs and accuracies) for each group separately (and
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Fig. 2. Relationship between drift rate and RT and EEG component activity. (A) Nine simulated diffusion processes with the same mean drift rate v, illustrating
the degree of variability in the process. (B) The distribution of drift rates across trials. For the Monte Carlo simulations, the RTs and choices are divided into 2
groups based on the drift rate used for that trial (the drift rate randomly selected from the distribution of drift rates across trials). (C) A plot of RTs as a function
of the individual drift rate for the trial. The parameters of the diffusion model were: drift rate v � 0.3, criteria separation a � 0.107, starting point z � 0.048,
duration of processes other than the decision process Ter � 0.48 s, standard deviation in drift rate across trial � � 0.20, range in starting points across trials
sz � 0.02, and range in Ter across trials st � 0.18 s. (D and E) Normal distributions for each coherence condition plotted from the means and standard deviations
in the amplitudes averaged over subjects for the early and late components (compare the histograms in Fig. 1C). (F and G) Bivariate distributions of drift rate
versus amplitude. These represent contours in the amplitude by drift rate bivariate distribution with the amplitudes taken from the distributions in D and E. The
EEG amplitudes are projected down from D and E for the 20% and 45% coherence stimuli as examples. The ellipses in G are diagonal, showing a positive
association between drift rate and the late-component amplitude, whereas the ellipses in E show no association. The arrows illustrate projections from
late-component amplitudes to drift rates for each half of the data, showing how differences in component amplitude lead to differences in drift rate.
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for each subject separately). We also sorted the data into halves
based on the latency of the peak amplitude for each of the 2
components. For the more accurate conditions (35%, 40%, and
45% coherence), there were too few errors to sufficiently
constrain the model, so these 3 conditions were combined after
sorting. Combining the 3 conditions was reasonable because
there was little difference in their accuracy or their RT distri-
butions. In fitting the diffusion model, all of the model’s param-
eters were free to vary between the more positive amplitude and
less positive amplitude groups for each condition. Note that
based on behavioral data alone, sorting trials within a stimulus
condition is impossible because there is no independent measure
of trial-to-trial stimulus quality. The EEG components provide
just this measure.

We first fit the model to the more positive and less positive
amplitude groups. The model fit the data well, so we can examine
whether there are systematic relationships between the compo-
nents of processing identified by the model and the EEG
amplitudes. We expected that drift rate would be more negative
for the lower-amplitude trials than the higher-amplitude trials.
But before presenting the results, we need to consider how large
the drift rate differences recovered from fits of the model might
be if, on each trial, the EEG component accurately indexed drift
rate. Two simulations were carried out: one with mean drift rate
0.3 and the other with mean drift rate 0.1 (typical of easy and

more difficult conditions, respectively). The standard deviation
in drift rate across trials (set at 0.20) and the other parameters
of the model were fixed at their values from fitting the behavioral
data (7). The simulated data were sorted into halves based on the
actual drift rate on each trial. Then, accuracy and RTs for correct
and error responses for each half were obtained. The diffusion
model was fit (9) to the 2 halves of the simulated data separately.
The average drift rate difference between the 2 halves for the 0.1
and for the 0.3 drift rates was 0.30. The average standard
deviation in drift rate across trials for the 2 halves was 0.12 (see
Materials and Methods for more details). Therefore, if the EEG
component provided a direct measure of drift rate, the upper
limit on the difference that could be obtained between the drift
rates for the more positive vs. less positive EEG amplitudes
would be 0.30, and the standard deviation in drift rate across
trials would be reduced from 0.20 to 0.12.

The hypothesis was that more positive drift rates would be
obtained for the data corresponding to the more positive EEG
amplitudes, and less positive drift rates would be obtained for the
data corresponding to the less positive EEG amplitudes. Fig. 3
A and B plots drift rates for the more positive EEG amplitudes
vs. drift rates for the less positive EEG amplitudes for the 8
conditions for each of the 6 subjects. For the early component,
there was little difference between the drift rates for the higher
and lower EEG amplitudes (F1,5 � 0.99). But for the late
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component, the drift rates were significantly larger for the more
positive EEG amplitudes than the less positive amplitudes
(F1,5 � 54.22; P � 0.05). This difference in drift rates (0.151) is
about half the difference (0.30) that would be obtained if the
late-component amplitude was an exact measure of drift rate as
in the simulations above. Thus, the single-trial amplitudes of the
late EEG component capture much but not all of the trial-to-trial
variability in decision-related evidence.

The same analyses as in Fig. 3 A and B were carried out with
the data divided into halves based on the peak times of the early
and late components, respectively. The results showed no dif-
ferences in drift rate for either component (Fig. 3C for the
early-component peak time, F1,5 � 0.04; Fig. 3D for the late-
component peak time, F1,5 � 0.58).

The explanation for these results is illustrated in Fig. 2 F and
G. The distributions for the 45% and 20% conditions from Fig.
2 D and E are projected down onto the component–amplitude
axis. The ellipses represent horizontal cuts through the 2D
bivariate distribution of drift rate vs. component amplitude. For
the late component, drift rate maps to amplitude, shown by the
diagonally oriented ellipses in Fig. 2G. Dividing the data into
halves based on the late-component amplitude and projecting
through the ellipse to the drift rate axis (arrows) gives drift rate
differences. But there is no relationship for the early component;
projections from the 2 early-component halves produce no
difference in drift rates (Fig. 2F).

The second prediction from the simulations above was that the
standard deviation in drift rate across trials (�) is reduced if
component amplitude is related to drift rate. For the fits based
on dividing the data according to the late component, the
average value of � was estimated at 0.15. This was significantly
different from the value of the standard deviation (0.20) for the
fit in ref. 7 of the model to all of the data [t(10) � 1.90; P � 0.05].
None of the other parameter values differed significantly be-
tween the fits to the more positive and less positive amplitude
sets of data. The average �2 goodness of fit value averaged over
subjects was �2 � 84.2, df � 74, critical value 95.1. The visual
quality of the fits was about the same as in figure 10A in ref. 7.

Discussion
In our analyses, the data within each experimental condition
from the face/car discrimination experiment were sorted into 2
groups based on the mean amplitudes and peak times of the early
and late EEG components. The diffusion model was fit sepa-
rately to the data from the 2 groups of trials. For the late
component, the estimates of drift rate were more positive for the
group with the more positive component amplitudes than for the
group with the less positive amplitudes. There were no such
differences in drift rate when the data were sorted based on the
amplitude of the early EEG component or when the data were
sorted on the peak time of either component.

We conclude that single-trial analysis of the late EEG com-
ponent amplitude can track trial-to-trial differences in discrim-
inating activity in the decision process. Across-trial variability in
postsensory stimulus quality is required in the diffusion model
for behavioral decision making, and this analysis provides evi-
dence for such variability. Our conclusion is supported by the
results from ref. 7: switching the task from face/car discrimina-
tion to red/green discrimination (with colored versions of the
same face and car stimuli) reduced the late EEG component
amplitude almost to zero, but it left the early EEG component
amplitude unchanged. These results converge to show that the
information used to drive the decision process—that is, reflected
in the late EEG component—is not the same as that which
produces the early EEG response. Thus, our results distinguish
between neural responses to early perceptual encoding and,
later, to postsensory processing that ultimately provides the

decision-relevant evidence entering the diffusion decision
process.

Our results highlight the importance of trial-to-trial variability
in nominally identical stimuli and its behavioral consequences.
Understanding the behavioral significance of trial-to-trial vari-
ability in neural activity is central to systems neuroscience. Our
results clearly demonstrate that distinguishing between variabil-
ity that is functionally significant and variability that is simply
noise should be a major objective of future research.

Materials and Methods
Subjects. Six subjects (3 women and 3 men, mean age 25.6 years) participated
in the experiment reported in ref. 6. All had normal or corrected-to-normal
vision and reported no history of neurological problems. Informed consent
was obtained from all subjects in accordance with the guidelines and approval
of the Columbia University Institutional Review Board.

Stimuli. We used a set of 18 face grayscale images (Max-Planck Institute for
Biological Cybernetics, Tuebingen, Germany) and 18 car grayscale images
(image size 512 � 512 pixels, 8 bits per pixel). All images were equated for
spatial frequency, luminance, and contrast. They all had identical magnitude
spectra, and their phase spectra were manipulated by using the weighted
mean phase (12) technique to generate a set of images characterized by their
percent of phase coherence. We processed each image to have 6 different
phase coherence values (20%, 25%, 30%, 35%, 40%, and 45%). The range of
phase coherence levels was chosen so that subjects performed nearly perfectly
at the highest phase coherence but were near chance for the lowest one. Each
image subtended 22° � 22° of visual angle.

Behavioral Paradigm. Subjects performed a simple face-vs.-car discrimination
task (6). Within a block of trials, face and car images for the different phase
coherences were presented in random order. Each image was presented for 30
ms, followed by an interstimulus interval that was randomized between 1,500
and 2,000 ms, in increments of 100 ms. Subjects were instructed to respond as
soon as they formed a decision and before the next image was presented. A
total of 54 trials per behavioral condition were presented over 3 blocks (i.e.,
a total of 648 trials, with each stimulus repeated 3 times). We excluded trials
for which subjects failed to respond on time.

Data Acquisition. EEG data from 60 scalp electrodes were acquired in an
electrostatically shielded room (ETS-Lindgren) by using a Sensorium EPA-6
Electrophysiological Amplifier. Three periocular electrodes placed below the
left eye and at the left and right outer canthi recorded eye movement data.
Data were sampled at 1,000 Hz, and they were referenced to the left mastoid
with chin ground. The main data preprocessing steps included a software-
based, 0.5-Hz highpass filter to remove DC drifts, and 60- and 120-Hz notch
filters to minimize line noise artifacts. Motor response and stimulus events
recorded on separate channels were delayed to match latencies introduced by
digitally filtering the EEG data. Eye blink and eye movement artifacts were
removed by using a principal component analysis-based approach (13).

Single-Trial EEG Data Analysis. In ref. 6, we used a single-trial analysis of the
EEG to discriminate between the experimental conditions (i.e., face vs. car). A
linear classifier based on logistic regression was used to find an optimal
projection in the sensor space for discriminating between the 2 conditions
over a specific temporal window (14, 15). Specifically, we defined a training
window starting at a poststimulus onset time �, with a duration of �, and used
logistic regression to estimate a spatial weighting vector w�,�, which maximally
discriminates between sensor array signals X for the 2 conditions:

y � w�,�
T X, [1]

where X is an N � T matrix (N sensors and T time samples). The linear
discriminator, through application of w on the N sensors, collapses the N-
dimensional EEG space to a 1-dimensional EEG discriminating component
space. The result is a ‘‘discriminating component’’ y (indexed by trial), which
is specific to activity correlated to the task conditions/labels. For a given trial
i, the ith element yi, is a signed quantity, with faces mapped to positive values
and cars to negative values. We use the term ‘‘component’’ instead of
‘‘source’’ to make it clear that this is a projection of all of the activity correlated
with the underlying source. For our experiments, the duration of the training
window (�) was 60 ms, and the window onset time (�) was varied across time.
We used the reweighted least-squares algorithm to learn the optimal discrim-
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inating spatial weighting vector w�,� (16). The discrimination vector w�,� can be
seen as the orientation (or direction) in the space of the EEG sensors that
maximally discriminates between the 2 experimental conditions. Thus, the
time dimension defines the time of a window (relative to the either the
stimulus or response) used to compute this discrimination vector. Given a fixed
window width (60 ms in this case), sweeping the training window from the
onset of visual stimulation to the earliest RT represents the evolution of the
discrimination vector across time. Within a window, at a fixed time, all samples
are treated as independent and identically distributed to train the discrimi-
nator. Once the discriminator is trained, it is applied across all time so as to
visualize the projection of the trials onto that specific orientation in EEG
sensor space. A ‘‘discriminating component’’ is defined as one such discrimi-
nation vector. To visualize the profile of these components (stimulus or
response locked) across all trials, we constructed discriminant component
maps. We aligned all trials of an experimental condition of interest to the
onset of visual stimulation and sorted them by their corresponding reaction
times. Therefore, each row of one such discriminant component map repre-
sents a single trial across time [i.e., yi(t)]. Example discriminant component
maps are shown in Fig. 1B.

We quantified the performance of the linear discriminator by the area
under ROC, referred to as Az, with a leave-one-out approach (17). We used the
ROC Az metric to characterize the discrimination performance while sliding
our training window from stimulus onset to RT (varying �). Finally, to assess the
significance of the resultant discriminating component, we used a bootstrap-
ping technique to compute an Az value leading to a significance level of P �
0.01. Specifically, we computed a significance level for Az by performing the
leave-one-outtestafterrandomizingthetruth labelsofourfaceandcartrials.We
repeated this randomization process 100 times to produce an Az randomization
distribution and compute the Az leading to a significance level of P � 0.01.

Fitting the Diffusion Model. The diffusion model was fit to the data separately
for each subject. Accuracy and RT distributions were fit by using a �2 method.
Specifically, the proportions of responses between the 0.1, 0.3, 0.5, 0.7, and 0.9
RT quantiles for correct and error responses were computed from the data and
the model, and a SIMPLEX minimization routine was used to adjust parameter
values until the proportions best matched each other (see ref. 9 for more
details).

The values of the parameters averaged over subjects for the fit to all of the

data (and averages for the fits to the 2 halves of the data for the late EEG
component in parentheses) were: boundary separation, 0.107 (0.105); starting
point, 0.048 (0.44); nondecision component, 0.480 (0.482) s; range in across-
trial variability in starting point, 0.019 (0.014); and range in across-trial vari-
ability in the nondecision component, 0.189 (0.183) s.

Diffusion Model Simulation and Analysis Details. Fig. 2C shows the relationship
between drift rate and individual simulated RTs for mean drift rate 0.3 and
standard deviation in drift rate across trials 0.2. The shortest RTs are approx-
imately the same across all drift rates, whereas the longest RTs increase as drift
rate decreases. This occurs because of the high degree of variability in pro-
cessing (illustrated in Fig. 2A). Thus, a short RT (e.g., 600 ms) is not predictive
of the actual drift rate on that trial, but a longer RT will be somewhat more
predictive so long as there are no outlier RTs (9). The amount of variability shows
that individual RTs cannot be used to index drift rate for individual trials.

To indicate the degree of variability in individual trials in the diffusion
model, we generated 100,000 simulated trials from the model by using
parameter values from fits to the experiments in ref. 7 with 2 typical drift rates:
0.1 and 0.3. The simulated data were generated, the actual value of drift rate
was recorded, and choice and RT were recorded. From these, accuracy values
and quantile RTs for the largest half of the drift rates and the smallest half of
the drift rates were obtained. The diffusion model was fit to these 2 halves of
the simulated data separately. Results showed that the drift rates estimated
from fits to the high and low groups of data were 0.491 and 0.143 for drift rate
0.30, and 0.253 and �0.056 for drift rate 0.10. The standard deviation in drift
rate across trials (�) used to generate the simulated data was 0.2, and the
values recovered from fitting the high and low halves of the data were 0.120
and 0.119 for drift 0.30, and 0.158 and 0.099 for drift 0.10. This shows that if
the EEG component was a direct measure of drift rate, we would expect to see
an upper limit on the difference in drift rates for the 2 halves of about 0.30,
and a reduction in � to about 0.12. These simulations use large numbers of
observations to examine what happens theoretically; however, to determine
what happens if the number of observations is the same as in the experiment, we
ran similar simulations using typical numbers of observations. Results showed a
large difference in drift rates (0.371) and a smaller reduction in � (0.16).
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