






This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

when they performed a Go/No-Go task designed to mimic

the situation of hitting a baseball. Below we discuss how

our novel multimodal fusion approach advances our under-
standing of the structural and functional correlates of

expertise, specifically expertise in hitting a baseball, while

also relating it to previous work on rapid decision making.

This study demonstrates that simultaneously acquired
EEG-fMRI can be used to infer functional networks and

Table 3 (continued)
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offer confirmatory evidence for source localization find-
ings, including those estimated from EEG-only acquisi-

tions [20]. Since source localization is an ill-posed

problem, the localization cannot be considered conclu-

sive; however, simultaneous EEG-fMRI enables a within-

subject and within-trial comparison of the brain regions

identified in functional analyses from the complementary

neuroimaging methodologies. Here, we show that activ-

ity in fusiform gyrus that was identified in our traditional
fMRI analysis of group differences between players and

controls [Fig. 2(b) and (c)] matched our EEG findings

that players have a larger activation in a source localized

in the fusiform region. This confirmatory, multimodal re-

sult adds to the growing literature that the fusiform gyrus

plays a significant role in the expertise-dependent visual

object recognition [43]–[47]. Players also had a larger ac-

tivation in the middle temporal gyrus (MTG) specifically
in the left visual area MT/V5 complex which may also give

players superior performance as this area is implicated in

motion processing. Another area where players exhibited

stronger activations was the supra-marginal gyrus. This

area is part of the action observation network (AON) and
plays a role in the somatosensory processing stream. Sur-

prisingly, we also see activation in the SMA in both the

Correct Go and Correct No-Go player/control contrasts.

The location of this activation is similar to the area found

in our previous Correct No-Go EEG source localization re-

sults [20], providing confirmatory evidence that players

preferentially activate their SMA, relative to controls, dur-

ing this baseball-like task. SMA regions, including the pre-
SMA, have a known role in motor learning [48]–[51] and

critical involvement during Go/No-Go tasks which probe

inhibitory control circuits [20], [52]–[56].

In addition to confirming previous results, simulta-

neously acquired EEG-fMRI allows for a more compre-

hensive understanding of the differences between players

and controls with respect to the spatiotemporal cascade

of activity across the brain. Our novel methodology iden-
tifies multiple poststimulus 50-ms windows with predic-

tive EEG neural correlates of expertise and fuses these

temporal windows with fMRI activity in a whole-brain

2-mm voxel analysis, revealing time-localized correlations

Table 3 (continued)
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of expertise at a spatial scale of millimeters. Many of the

significant regions found in the fusion analysis were also

observed in the traditional player versus controls con-

trast, though the fusion analysis enabled a deconstruction

of this activity across time. Additionally, some areas that

significantly correlate with expertise in the fused analysis

were not present in the traditional analysis, including the
SFG, the hippocampus, and all regions with significant

negative correlations [Fig. 3(c) and (d)]. These novel spa-

tiotemporal findings suggest that the fused approach may

provide more sensitivity than a traditional fMRI-only

GLM analysis. Interestingly, the fused approach identified

regions in early visual processing areas—the temporal oc-

cipital fusiform cortex (TOFC), parahippocampal gyrus,

and paracingulate gyrus. Activity in these regions were sig-
nificantly correlated with expertise, and they are the same

areas known to be used in Bar’s visual prediction theory

[57]. In addition, significant positive correlations in the

right SFG at 275 and 300 ms for Correct Go and Correct

No-Go trials maps directly to a region known to integrate

information from the visual processing areas [58]. This

functional evidence taken together helps to support the

theory that expertise—specifically, sportive expertise—can

produce more efficient neural processing for domain spe-

cific perceptual tasks [59]–[61].

This novel fusion methodology is fully data-driven

and uses the entire EEG sensor and fMRI voxel space to

identify the functional cascade that differentiates two

groups. To date, the majority of EEG-fMRI studies use
correlative measures to inspect the EEG-informed BOLD

modulations [62], and relatively little previous work has

used EEG-fMRI fusion methodologies to identify differ-

ences between subject populations. One recent exception

is [63], who used a joint independent component analy-

sis (jICA, [64]) with simultaneous EEG-fMRI to show

that schizophrenic patients have marked differences in

processing oddball stimuli compared to controls, but
their methodology only used a single electrode for the

EEG analysis and requires user supervision to determine

ICA components.

Our data-driven methodology takes a more comple-

mentary approach to fuse neural information across EEG

and fMRI methodologies since it is well known that each

neuroimaging measurement may reflect characteristics of

Fig. 4. Structural network organization and differences related to expertise. (a) Average structural connectivity matrix reorganized by

its modular organization. Edges are streamline counts that pass between AAL atlas regions of interest. (b) Three-dimensional sagittal

and axial views of the structural networks in anatomical space displaying the top 0.5% of connections. (c) Structural connectivity

matrix group differences (p G0:05, uncorrected) displaying expert baseball players 9 controls (red) and controls 9 players (blue) for

streamline counts in the connectivity matrix and 3-D brain space. (d) Number of player 9 control (red) and control 9 player between

group connections differing for within-module and between-module connections (left) and specific module-to-module results (right).

Significance (p G0:05 FDR corrected) for module-to-module differences was computed by 5000 permutations. Significant

module-to-module differences are marked by “**.”
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different populations of cells [65]. Here, we use all EEG

electrodes to identify temporal windows with neural cor-

relates of expertise that can successfully classify players

versus controls and then use this temporal information in

a whole-brain GLM analysis of fMRI data to investigate
which regions of the brain covary with the predictive

EEG signals of expertise. While our results confirm the

promise of our EEG-fMRI fusion approach, future re-

search should continue to explore additional methods to

extract the strengths of each neuroimaging modality and

mitigate known weaknesses, allowing additional hybrid

analyses to expand our understanding of relationships be-

tween complementary neuroimaging signals.
Our fusion approach for simultaneously collected EEG

and fMRI data provides a functional mapping of expertise

related differences between the players and controls. It is

also important to identify and understand if there are

structural differences between the groups. Structural con-

nectivity analysis showed that the players have signifi-

cantly more coherent structural connections between

cerebellar and left frontal/motor regions [Fig. 4(d)].
These trends point to the players having neuroplastic

changes specific to motor processing regions of the brain.

This is more clearly shown in the overlap between the

functional activations from the EEG-fMRI fusion and the

structural connectivity (Fig. 5). This fronto–cerebellar

pattern is particularly interesting given that there is a

well-established pattern of connectivity between lateral

frontal areas and lateral regions of the cerebellum, consis-
tent with the location of expertise predicting activity in

our task [66]. Rather than regulating motor coordination,

as is usually assumed with cerebellar pathways, these
cortical–cerebellar networks are thought to regulate the

integration of high-level executive and attention pro-

cesses that are critical for efficient, adaptive decision

making [67]. We found that expert players have greater

network-level communication, at both the structural and

functional levels, between these fronto–cerebellar cir-

cuits. This between-module communication is a plausible

neural substrate that can explain the improved behavioral
performance at a sensory discrimination task with mini-

mal movement control demands.

In summary, our results indicate a difference in the

unfolding of cognitive processes for players versus con-

trols and that these functional differences may at least be

partially a result of differences in structural networks be-

tween the groups. We find correlative evidence that

these macroscale neural differences translate into higher
behavioral accuracies and faster response times in

players. The spatiotemporal cascade reflecting these dif-

ferences between the groups begins as early as 200 ms

after the pitch starts and lasting up to 700 ms afterwards.

Network differences are spatially localized to include

motor and visual processing areas, providing evidence for

differences in perception–action coupling between the

groups. These findings reinforce many studies implicat-
ing these areas in mediating visual prediction and exper-

tise [43], [47], [57], [68]–[70]. We also find that our

results confirm many prior fMRI studies showing that

athletes have stronger activations in the action observa-

tion network while they observed or listened to the do-

main of their expertise [59]–[61], [71]–[76].

In general, our approach illustrates how multimodal

neuroimaging can provide specific macroscale insights into
the functional and structural correlates of expertise devel-

opment. This approach, however, may also capture under-

lying physiology that can account for variability in

performance, whether it arises from between subject differ-

ences due to genetic or experimental factors or from within

subject variability due to fluctuations in attention, interest,

etc. Future work should examine the sensitivity of this mul-

timodal approach to capture variability across varying levels
of expertise, providing a framework to reveal how brain

connectivity enables superior performance. h
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