The Bilinear Brain: Towards Subject‐Invariant Analysis

C. Christoforou, R. Haralick, Paul Sajda, L. Parra

A major challenge in single-trial electroencephalography (EEG) analysis and Brain Computer Interfacing (BCI) is the so called, inter-subject/inter-session variability: (i.e large variability in measurements obtained during different recording sessions). This variability restricts the number of samples available for single-trial analysis to a limited number that can be obtained during a single session. Here we propose a novel method that distinguishes between subject-invariant features and subject-specific features, based on a bilinear formulation. The method allows for one to combine multiple recording of EEG to estimate the subject-invariant parameters, hence addressing the issue of inter-subject variability, while reducing the complexity of estimation for the subject-specific parameters. The method is demonstrated on 34 datasets from two different experimental paradigms: Perception categorization task and Rapid Serial Visual Presentation (RSVP) task. We show significant improvements in classification performance over state-of-the-art methods. Further, our method extracts neurological components never before reported on the RSVP thus demonstrating the ability of our method to extract novel neural signatures from the data.

Accepted 31 March 2010
Download Now

Latest News & Links

See All News