Single-trial Analysis of Neuroimaging Data: Inferring Neural Networks Underlying Perceptual, Decision Making in the Human Brain

Paul Sajda, L. Parra

Advances in neural signal and image acquisition as well as in multivariate signal processing and machine learning are enabling a richer and more rigorous understanding of the neural basis of human decision-making. Decision-making is essentially characterized behaviorally by the variability of the decision across individual trials—e.g., error and response time distributions. To infer the neural processes that govern decision-making requires identifying neural correlates of such trial-to-trial behavioral variability. In this paper, we review efforts that utilize signal processing and machine learning to enable single-trial analysis of neural signals acquired while subjects perform simple decision-making tasks. Our focus is on neuroimaging data collected noninvasively via electroencephalograpy (EEG) and functional magnetic resonance imaging (fMRI). We review the specific frame-work for extracting decision-relevant neural components from the neuroimaging data, the goal being to analyze the trial-to-trial variability of the neural signal along these component directions and to relate them to elements of the decision-making process. We review results for perceptual decision-making and discrimination tasks, including paradigms in which EEG variability is used to inform an fMRI analysis. We discuss how single-trial analysis reveals aspects of the underlying decision-making networks that are unobservable using traditional trial-averaging methods.

Accepted 16 October 2009
Download Now

Latest News & Links

See All News