Tagged: EEG

Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing

Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making.

A multimodal encoding model applied to imaging decision-related neural cascades in the human brain

Abstract Perception and cognition in the brain are naturally characterized as spatiotemporal processes. Decision-making, for example, depends on coordinated patterns of neural activity cascading across the brain, running in time from stimulus to response and in space from primary sensory regions to the frontal lobe. Measuring this cascade is key to developing an understanding of brain function. Here we report on a novel methodology that employs multi-modal imaging for inferring this cascade in humans at unprecedented spatiotemporal resolution. Specifically, we develop an encoding model to link simultaneously measured electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) signals to infer high-resolution spatiotemporal brain dynamics during a perceptual decision. After demonstrating replication of results from the literature, we report previously unobserved sequential reactivation of a substantial fraction of the pre-response network whose magnitude correlates with a proxy for decision confidence. Our encoding model, which temporally tags BOLD activations using time localized EEG variability, identifies a coordinated and spatially distributed neural cascade that is associated with a perceptual decision. In general the methodology illuminates complex brain dynamics that would otherwise be unobservable using fMRI or EEG acquired separately.

Neural mechanisms underlying catastrophic failure in human–machine interaction during aerial navigation

Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human–machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.